558 research outputs found

    Solvent Isotope Effect on Transfer Hydrogenation of H2O with Glycerine under Alkaline Hydrothermal Conditions

    Get PDF
    Solvent isotope effect was investigated with 1H-, 2H-NMR, LC-MS and Gas-MS analyses on transfer hydrogenation of H2O with glycerine under alkaline hydrothermal conditions. The results from solvent isotope studies showed that (1) the H on the β-C of lactate was almost exchanged by D2O, which suggests that the hydroxyl (-OH) group on the 2-C of glycerine was first transformed into a carbonyl (C=O) group and then was converted back into a -OH group to form lactate; (2) The presence of large amounts of D was found in the produced hydrogen gas, which shows that the water molecules acted as a reactant; and (3) D% in the produced hydrogen gas was far more than 50%, which straightforwardly shows that acetol was formed in the first place as the most probable intermediate by undergoing a dehydration reaction rather than a dehydrogenation reaction

    Solvent Isotope Effect on Hydrogen-Transfer Reduction of CO2 into Formate with Glycerine by Alkaline Hydrothermal Reaction

    Get PDF
    To examine the solvent isotope effect on hydrogen-transfer reduction of CO2 into formate with glycerine by alkaline hydrothermal reaction, intermediates were identified by 13C-NMR, 1H-NMR, 2H-NMR, LC-MS analyses. The results showed that (1) CO2 was indeed converted into abiogenic formate; (2) a ketone carbonyl group as intermediate product was formed on hydrogen-transfer reduction of CO2 into formate with glycerine by alkaline hydrothermal reaction; (3) acetol was the most probable intermediate in the first reaction by undergoing a dehydration rather than a dehydrogenation

    SOT-MRAM-Enabled Probabilistic Binary Neural Networks for Noise-Tolerant and Fast Training

    Full text link
    We report the use of spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) to implement a probabilistic binary neural network (PBNN) for resource-saving applications. The in-plane magnetized SOT (i-SOT) MRAM not only enables field-free magnetization switching with high endurance (> 10^11), but also hosts multiple stable probabilistic states with a low device-to-device variation (< 6.35%). Accordingly, the proposed PBNN outperforms other neural networks by achieving an 18* increase in training speed, while maintaining an accuracy above 97% under the write and read noise perturbations. Furthermore, by applying the binarization process with an additional SOT-MRAM dummy module, we demonstrate an on-chip MNIST inference performance close to the ideal baseline using our SOT-PBNN hardware

    Some recent studies on hohlraum physics

    Full text link
    Some of our recent studies on hohlraum physics are presented, mainly including simulation study on hohlraum physics experiments on SGIII prototype, the design of Au + U + Au sandwich hohlraum for ignition target, and an initial design of elliptical hohlraum and pertinent drive laser power in order to generate an ignition radiation profile

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp
    corecore