1,171 research outputs found

    P-wave Quarkonium Decays to Meson Pairs

    Full text link
    The processes of P-wave Quarkonium exclusive decays to two mesons are investigated, in which the final state vector mesons with various polarizations are considered separately. In the calculation, the initial heavy quarkonia are treated in the framework of non-relativistic quantum chromodynamics, whereas for light mesons, the light cone distribution amplitudes up to twist-3 are employed. It turns out that the higher twist contribution is significant and provides a possible explanation for the observation of the hadron helicity selection rule violated processes χc1ϕϕ,ωω\chi_{c1}\rightarrow \phi\phi,\omega\omega by the BESIII collaboration in recently. We also evaluate the χb1J/ψJ/ψ\chi_{b1}\to J/\psi J/\psi process and find that its branching ratio is big enough to be measured at the B-factories.Comment: more results and discussions adde

    Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    Get PDF
    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics

    Dust-free quasars in the early Universe

    Full text link
    The most distant quasars known, at redshifts z=6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z=6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic

    Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: safety and quality of life report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence suggests that both green tea polyphenols (GTP) and Tai Chi (TC) exercise may benefit bone health in osteopenic women. However, their safety in this population has never been systematically investigated. In particular, there have been hepatotoxicity concerns related to green tea extract. This study was to evaluate the safety of 24 weeks of GTP supplementation combined with TC exercise in postmenopausal osteopenic women, along with effects on quality of life in this population.</p> <p>Methods</p> <p>171 postmenopausal women with osteopenia were randomly assigned to 4 treatment arms for 24 weeks: (1) Placebo (500 mg starch/day), (2) GTP (500 mg GTP/day), (3) Placebo + TC (placebo plus TC training at 60 min/session, 3 sessions/week), and (4) GTP + TC (GTP plus TC training). Safety was examined by assessing liver enzymes (aspartate aminotransferase, alanine aminotransferase), alkaline phosphatase, and total bilirubin at baseline and every 4 weeks. Kidney function (urea nitrogen and creatinine), calcium, and inorganic phosphorus were also assessed at the same times. Qualify of life using SF-36 questionnaire was evaluated at baseline, 12, and 24 weeks. A mixed model of repeated measures ANOVA was applied for analysis.</p> <p>Results</p> <p>150 subjects completed the study (12% attrition rate). The compliance rates for study agents and TC exercise were 89% and 83%, respectively. Neither GTP supplementation nor TC exercise affected liver or kidney function parameters throughout the study. No adverse event due to study treatment was reported by the participants. TC exercise significantly improved the scores for role-emotional and mental health of subjects, while no effect on quality of life was observed due to GTP supplementation.</p> <p>Conclusions</p> <p>GTP at a dose of 500 mg/day and/or TC exercise at 3 hr/week for 24 weeks appear to be safe in postmenopausal osteopenic women, particularly in terms of liver and kidney functions. TC exercise for 24 weeks (3 hr/wk) significantly improved quality of life in terms of role-emotional and mental health in these subjects. ClinicalTrials.gov identifier: NCT00625391.</p

    In-vivo visualisation of the anatomical structures related to the acupuncture points Dai mai and Shen mai by MRI: A single-case pilot study

    Get PDF
    BACKGROUND: The concept of acupuncture point localisation in Traditional Chinese Medicine (TCM) is based on millenary practical experience. Modern imaging methods such as PET, MRI and SPECT have been used primary for the investigation of the mechanisms of action of acupuncture. In this pilot single-case study we have evaluated the technical possibilities for in-vivo imaging of the anatomical relations of acupuncture points using state of the art MRI. METHODS: Preliminary experiments relating to the quality of acupuncture needles under the setting of MRI were done both with stainless steel and gold needles. In a second step, in-vivo imaging was carried out. A licensed acupuncture practitioner (RM) chose two points belonging to the so-called extraordinary vessels. In 2 sequential, separate procedures, he inserted himself gold acupuncture needles using a neutral technique (known as Ping Bu Ping Xie) into the Dai mai and Shen mai points, i.e. gall bladder 26 and bladder 62. Imaging was done on a Siemens Magnetom Avanto MR scanner using a head array and body coil. Mainly T1-weighted imaging sequences, as routinely used for patient exams, were used to obtain multi-slice images. RESULTS: In the preliminary experiments only acupuncture needles made of gold showed enough stability in order to be used for further imaging procedures. Using an onion and a banana as an object, further studies showed that the gold needles produced a void defect that corresponds to the tip of the inserted needle, while at the same time an artefactually increased diameter was observed. The in-vivo experiments showed that the Dai mai point was in relation to the abdominal internal oblique muscle. The Shen mai point artefact showed up close to the longus and brevis peroneal tendons at the fibular malleolus. Side effects related to heating or burning were not observed. Improved anatomical recognition was obtained using 3D-volume rendering techniques. CONCLUSION: Through an adequate choice of acupuncture material (gold needles) as well as of ideal MRI imaging sequences it has been possible to visualize the anatomical characteristics at the acupuncture points Dai mai and Shen mai in-vivo. At the selected sites the needles showed a relation to tendino-fascial and muscular structures. These anatomical structures fit well into the recently described WOMED concept of lateral tension in which these acupuncture points play a regulatory role

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph

    A pipeline for high throughput detection and mapping of SNPs from EST databases

    Get PDF
    Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
    corecore