280 research outputs found
A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic predisposition, characterized by an upregulated type I interferon pathway. MicroRNAs are important regulators of immune homeostasis, and aberrant microRNA expression has been demonstrated in patients with autoimmune diseases. We recently identified miR-146a as a negative regulator of the interferon pathway and linked the abnormal activation of this pathway to the underexpression of miR-146a in SLE patients. To explore why the expression of miR-146a is reduced in SLE patients, we conducted short parallel sequencing of potentially regulatory regions of miR-146a and identified a novel genetic variant (rs57095329) in the promoter region exhibiting evidence for association with SLE that was replicated independently in 7,182 Asians (Pmeta = 2.74×10−8, odds ratio = 1.29 [1.18–1.40]). The risk-associated G allele was linked to reduced expression of miR-146a in the peripheral blood leukocytes of the controls. Combined functional assays showed that the risk-associated G allele reduced the protein-binding affinity and activity of the promoter compared with those of the promoter containing the protective A allele. Transcription factor Ets-1, encoded by the lupus-susceptibility gene ETS1, identified in recent genome-wide association studies, binds near this variant. The manipulation of Ets-1 levels strongly affected miR-146a promoter activity in vitro; and the knockdown of Ets-1, mimicking its reduced expression in SLE, directly impaired the induction of miR-146a. We also observed additive effects of the risk alleles of miR-146a and ETS1. Our data identified and confirmed an association between a functional promoter variant of miR-146a and SLE. This risk allele had decreased binding to transcription factor Ets-1, contributing to reduced levels of miR-146a in SLE patients
Production of Superoxide Anions by Keratinocytes Initiates P. acnes-Induced Inflammation of the Skin
Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2•−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2•− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2•− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2•− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2•− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2•− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans
The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods
<p>Abstract</p> <p>Background</p> <p>The incidence of acute kidney injury (AKI) has been increasing over time and is associated with a high risk of short-term death. Previous studies on hospital-acquired AKI have important methodological limitations, especially their retrospective study designs and limited ability to control for potential confounding factors.</p> <p>Methods</p> <p>The Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) Study was established to examine how a hospitalized episode of AKI independently affects the risk of chronic kidney disease development and progression, cardiovascular events, death, and other important patient-centered outcomes. This prospective study will enroll a cohort of 1100 adult participants with a broad range of AKI and matched hospitalized participants without AKI at three Clinical Research Centers, as well as 100 children undergoing cardiac surgery at three Clinical Research Centers. Participants will be followed for up to four years, and will undergo serial evaluation during the index hospitalization, at three months post-hospitalization, and at annual clinic visits, with telephone interviews occurring during the intervening six-month intervals. Biospecimens will be collected at each visit, along with information on lifestyle behaviors, quality of life and functional status, cognitive function, receipt of therapies, interim renal and cardiovascular events, electrocardiography and urinalysis.</p> <p>Conclusions</p> <p>ASSESS-AKI will characterize the short-term and long-term natural history of AKI, evaluate the incremental utility of novel blood and urine biomarkers to refine the diagnosis and prognosis of AKI, and identify a subset of high-risk patients who could be targeted for future clinical trials to improve outcomes after AKI.</p
Functional Changes in the Snail Statocyst System Elicited by Microgravity
BACKGROUND: The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. METHODOLOGY/PRINCIPAL FINDINGS: In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13-42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. CONCLUSIONS/SIGNIFICANCE: Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity changes. This simple animal model offers the possibility to describe general subcellular mechanisms of nervous system's response to conditions on Earth and in space
Impact of HPV vaccination : health gains in the Italian female population
Abstract Background Human papillomavirus (HPV) is the leading cause of cervical cancer and other malignant and benign neoplastic lesions. HPV vaccination has three potential goals: to prevent transmission, infection, and disease. At present, there are no available data about health consequences of HPV immunization in Italy. The aim of this study is to evaluate the effect of current HPV vaccination strategy in Italy. Methods A multistate morbidity-mortality model was developed to estimate the infection process in a theoretical cohort of Italian women. The Markov process considered nine health states (health, anogenital warts, grade 1 and grade 2/3 cervical intraepithelial neoplasia, cervical cancer, anal cancer, death due to cervical cancer, anal cancer and other causes), and 26 transition probabilities for each age group. The model was informed with the available data in national and international literature. Effectiveness of immunization was assumed considering a literature review pertaining to models and vaccination coverage rates observed in Italy. Life expectancy (ex), Quality-Adjusted Life Years (QALYs), Disability-Adjusted Life Years (DALYs), and attributable risk (AR) were estimated for no intervention (cervical cancer screening) and vaccination strategies scenarios. Results The model showed that in a cohort of 100,000 Italian women the e0 is equal to 83.1Â years. With current HPV vaccination strategy the e0 achieves 83.2 (+0.1) years. When HPV-related diseases are considered altogether, the QALYs increase from 82.7 to 82.9 (+0.2 QALYs) with no intervention and vaccination strategies respectively. DALYs decrease by 0.6 due to vaccination. Finally, AR is equal to 93 and 265 cases per 100,000 women in population and not vaccinated, respectively. Conclusion When mortality due to cervical cancer is considered, HPV vaccination seems to have a low impact on health unit gains in the Italian female population. Conversely, when several HPV-related and cancer morbidity conditions are included, the effect of vaccination becomes quite remarkable
Burden of disease of human papillomavirus (HPV) : hospitalizations in the Marche and Veneto regions. An observational study
Background and Objectives HPV (human papillomavirus) is the virus most often responsible for sexually transmitted infections. The burden of HPV-related diseases on hospital resources represents a major public health problem. The aim of this study was to assess the economic burden of HPV-related diseases (anal cancer, genital cancer, genital warts, oropharyngeal cancer) on hospital resources in two Italian regions.Methods A retrospective, non-randomized, observational study was developed in the Marche and Veneto Regions, based on patients receiving hospitalization between 2008 and 2011. All hospitalizations were identified through administrative archives, according to the International Classification of Diseases (ICD-9 CM) to which a defined tariff was assigned.Results We identified 5299 hospitalized patients in Veneto and 1735 in the Marche Region. The mean annual hospitalization rate was 49.44 per 100,000 individuals in Veneto and 48.41 in Marche. The total mean annual cost attributable to HPV-related diseases was (sic)5.78 (SD 0.80) million in Veneto and (sic)2.24 (SD 0.17) million in Marche. Costs associated with genital cancer amounted to (sic)1.61 million in Veneto and (sic)1.06 million in Marche (28% and 47% of the total mean annual cost, respectively). Oropharyngeal cancer accounted for 36% in Veneto ((sic)2.08 million) and 28% in Marche ((sic)632,645). Hospitalization costs related to anal cancer were (sic)882,567 in Veneto and (sic) 377,719 in Marche; genital warts accounted for (sic)1.19 million in Veneto and (sic)171,406 in Marche. Finally, the mean cost per patient was (sic)4364 in Veneto and (sic)5176 in Marche.Conclusions The present work estimated the cost of HPV-related diseases for hospitalized patients in two Italian regions. The considerable estimated annual economic burden is a powerful driver for the governance of the public health sector
The structure of the tetrasialoganglioside from human brain
Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias
Enzyme sequestration as a tuning point in controlling response dynamics of signalling networks
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications
- …