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Abstract

The pathogenesis of Systemic Lupus Erythematosus (SLE) is complex and remains poorly understood. Infectious
triggers, genetic background, immunological abnormalities and environmental factors are all supposed to interact
for the disease development. Familial SLE as well as early-onset juvenile SLE studies make it possible to identify
monogenic causes of SLE. Identification of these rare inherited conditions is of great interest to understand both
SLE pathogenesis and molecular human tolerance mechanisms. Complement deficiencies, genetic overproduction
of interferon-α and apoptosis defects are the main situations that can lead to monogenic SLE.
Here, we review the different genes involved in monogenic SLE and highlight their importance in SLE
pathogenesis.
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Systemic lupus erythematosus (SLE) is a complex dis-
ease: environmental factors (e.g. infections), immuno-
logical defects (responsible for tolerance breakdown),
and genetic factors (mostly thought to be polygenic and
associated to genetic polymorphism [1,2]) all play a role
in its development. Rarely, lupus can be secondary to
single gene mutations; we summarize recently discov-
ered monogenic forms of lupus, and highlight the im-
pact of these gene mutations on SLE pathogenesis.
Review
Complement defects: apoptotic cell and immune
complexes clearance deficiency
Primary complement defects, especially in early compo-
nents of the classical pathway, can lead to an increased
susceptibility to SLE [3]. However, less than 1% of SLE
cases are associated with complement deficiencies, and
conversely complement deficiencies are not always asso-
ciated to SLE [4]. C1q, C1s and C1r complete deficien-
cies are rare and associated with a high risk to develop
pediatric SLE (estimated to 93% for C1q and 66% for
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C1s/r). C1q deficiency is associated with cutaneous rash
in 90% of case and glomerulonopehritis in around 1/3 of
cases [5]. Notably, the incidence of anti–double-
stranded DNA antibodies "(anti-dsDNA)"is low. C4 defi-
ciency is also strongly associated with SLE development
(around 75%) [6-8] (Table 1). Homozygous C2 defi-
ciency, which is the most frequent hereditary deficiency
in classical pathway complement components (1/10,000
to 1/30,000 among caucasians), is associated with SLE in
only 10 to 30% of the cases, suggesting that exogenous
factors may be also involved. In all cases, early-onset dis-
ease and association with recurrent pyogenic or neisser-
ial infections should evoke the diagnosis.
Complement deficiencies demonstrate the crucial role

of complement in maintenance of tolerance (Figure 1).
Early components of the classical pathway (especially
C1q) help clearing apoptotic cells, thus decreasing the
number of autoantigens [9]. Another role of comple-
ment is to process antibodies and eliminate circulating
immune complexes, thus decreasing or avoiding vascular
deposition. Interestingly, complement plays a role in T
and B cell activation as well, and complement deficiency
may upset the balance of lymphoid cell activation[10].
Finally, C1q has also been shown to inhibit in vitro
interferon IFN-α production by plasmacytoid dendritic
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Table 1 Complement deficiencies

Complement
deficiency

Locus Inheritance
pattern

Clinical manifestations Infection susceptibility

C1q 1p36.3-p34.1 AR Nephritis, CNS involvement, photosensitivity Encapsulated bacteria

C1r/C1s 12p13 AR Nephritis Encapsulated bacteria

C4 6p21.3 AR Multiorgan involvement; glomerulonephritis Encapsulated bacteria

C2 6p21.3 AR Photosensitivity and articular involvement;
mild or absent renal, neurological or
pleuropericardial involvement

Pyogenic infections; encapsulated bacteria;
Streptococcus pneumoniae sepsis and
meningitis

C3 19q13 AR Malar rash, photosensitivity, arthralgia and
Raynaud’s phenomenon

Recurrent pyogenic infections

C5-C9: MAC C5/9p34.1, C6-C7/5p13,
C8A-C8B/1p32, C8G/9,
C9/5p13

AR Multiorgan involvement Neisserial infections
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cells [11], and its deficiency can lead to defective sup-
pression of IFN-α in response to immune complex-
containing nucleoproteins [12].

Apoptosis defects
Apoptosis defects are thought to be involved in SLE
pathogenesis as autoreactive B and/or T cells might sur-
vive death signals when they are ongoing central or
Figure 1 Schematic views of monogenic SLE pathogenesis.
peripheral tolerance. Nevertheless, to date there is no
evidence that apoptosis-related gene defects involving B
or T cell tolerance are directly involved in the pathogen-
esis of SLE. Autoimmune lymphoproliferative syndrome
(ALPS) is the human counterpart of the lpr mouse, a
widely explored model of murine lupus. Molecular
mechanisms of ALPS are related to deficiencies of T cell
apoptosis. Mutations in the Fas/FasL pathway underlie
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ALPS, which is characterized by lymphoproliferation in
lymphoid organs associated with multiple autoimmunity
[13]. One single case has been reported with classical
features of SLE [14].

Interferon (IFN)-α hyperproduction
Genomic approaches have shown that human SLE leu-
kocytes homogeneously express type I interferon (IFN)-
induced transcripts [15]. In addition, large-scale genetic
analyses have demonstrated that genes involved in IFN-
α pathway such as IRF5, IRF7 both expressed down-
stream of the endosomal TLR or STAT-4, transcriptional
factor induced by Interferon type I were associated with
SLE [16]. In the last years, studies on early-onset SLE
and familial SLE led to the identification of new genes
involved in IFN-α production (Table 2). This all started
with the identification of the genes responsible for
Aicardi-Goutieres syndrome (AGS) [17]. AGS is a rare
genetic disorder occurring within the first few weeks of
life that can mimic maternofetal infections, with an in-
flammatory encephalopathy. This autosomal recessive
disease is associated with high IFN-α production [18].
Some children with AGS develop an early-onset form of
SLE [19,20].
Nucleic acid are able to initiate an immune response,

activating membrane receptors such as Toll-like recep-
tors (TLR) or cytosolic sensors, involved in IFN-α pro-
duction [21]. Defective clearance of self-derived nucleic
acids can cause severe IFN-associated autoimmunity
(Figure 1). One major mechanism by which these extra-
cellular nucleic acids cause autoimmunity is through ac-
tivation of TLR7 and TLR9 on autoreactive B cells
[22,23]. Recently, it has been shown that TREX1 defi-
ciency results in endogenous DNA accumulation and
IFN-α production, independently from TLRs [24].

Rare cases of nuclease defects are responsible for
monogenic lupus
DNAse type III, also called TREX1, is the main 3’-
5’DNA exonuclease and has been shown to down-
regulate IFN-stimulatory DNA response [24]. TREX1
knockout mouse develop an inflammatory cardiopathy
[25]. Interestingly, TREX1 deficiency is responsible for
intracellular DNA accumulation and TLR independent-
Table 2 Main features of mendelian SLE

Gene mutated/protein Chromosome Inheritance Cli

TREX1/TREX1 3p21 AD Ch

DNAse I/DNase I 16p13 AD Sys

DNAse IL3/DNase1L3 3p14 AR Ear

AGS5/SAMHD1 20q11 AD Ch

ACP5/TRAP 19p13 AR Gro
my

AD= autosomal dominant; AR = autosomal recessive.
IFN-α production[24]. TREX1 mutations in humans lead
to Aicardi-Goutieres syndrome, chilblain lupus and rep-
resent the more common cause of monogenic lupus. In-
deed, systematic TREX1 mutation screening in adult
lupus patients revealed 0.5 to 2% heterozygosity, thus
making TREX1 mutations the most frequent form of
monogenic lupus [26,27].

Other gene involved in Aicardi Goutières syndrome
SAMHD1 is a protein, encoded by AGS5, that is upregu-
lated in response to viral infections and may have a
regulator role on immune system and cerebral vascular
homeostasis [28,29]. One case of chillblain lupus in a 3-
year-old boy with epilepsy was first diagnosed with a
mutation in AGS5 gene [30]. Two additional cases have
been reported with typical chillblain lupus, without cen-
tral nervous system involvement [31]. AGS5 mutations
can be associated with arthritis, chronic ulcers, mental
retardation and microcephaly. Plasmatic IFN-α is
increased, even though SAMHD1 deficiency has not yet
been directly linked to IFN overproduction.

Spondyloenchondrodysplasia (SPENCD)
ACP5 is another gene, encoding tartrate-resistant acid
phosphatase (TRAP), that has been associated to an
immuno-osseous disease: the spondyloenchondrodyspla-
sia (SPENCD). This syndrome is associated with platis-
pondily, growth retardation and enchondromatosis.
Various immunological findings have been reported in-
cluding typical SLE with malar rash, lupus nephritis,
antiphospholipid syndrome and anti-dsDNA [32]. Osse-
ous anomalies can be subtle. TRAP is expressed in bone
and in immune cells (mainly osteoclasts and dendritic
cells) and is involved in bone resorption, even though its
precise physiological role remains to be defined. Osteo-
pontin (OPN, a substrate of TRAP) is a bone matrix
protein involved in osteoclast adhesion and migration,
and is dephosphorylated by TRAP [33,34]. In TRAP-
deficient mice, OPN accumulates both around osteo-
clasts and in intracellular vacuoles, suggesting that
TRAP is required for processing and/or degradation of
OPN [16]. Interestingly, OPN accumulates in serum,
urine and cells cultured from TRAP-deficient individuals
and patients’ dendritic cells exhibit an altered cytokine
nical features

ilblain lupus, intracerebral calcifications

temic lupus, Sjögren syndrome,high levels of antinucleosomal antibodies

ly-onset SLE, antinuclear antibodies, anti-dsDNA, ANCA

ilblain lupus, intracerebral calcifications, mental retardation

wth retardation, spondyloenchondrodysplasia, SLE, Sjögren, vitiligo,
ositis, Raynaud, ANA, anti-dsDNA
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profile, and are more potent than control cells in stimu-
lating allogeneic T cell proliferation in mixed lymphocyte
reactions [35]. OPN and IFN-α levels are both elevated
in lupus patient’s sera and seems correlated [36]. In
mouse, OPN is essential for IFN-α production, down-
stream of the Toll-like-receptor 9 in plasmacytoïd den-
dritic cells [37]. Taken together, TRAP deficiency may
drive an inflammatory T cell response and promote IFN-α
production in human.

DNASE1/DNASE1L3 mutation
DNAse type I is a widespread endonuclease that can be
found in blood and urine. DNase1 deficiency in mouse
induces the presence of ANA and the deposition of im-
mune complexes in glomeruli [38]. Two unrelated cases
of juvenile SLE were reported with a mutation in DNAse
type 1 [39], and exhibited very high levels of antinucleo-
somal antibodies. This variant represent a very rare
cause of lupus and further exploration in a large UK co-
hort of 170 SLE patients did not found any mutation
[40]. Recently, a group from Saudi Arabia has identified
DNASE1L3 as a new gene mutated in familial cases of
juvenile SLE [41]. Mutated patients presented with asso-
ciation of anti-nuclear antibody, anti-dsDNA and
ANCA. The link to SLE pathogenesis is unknown, but
may be (as in TREX1 mutations) related to DNA accu-
mulation, thus triggering IFN-α production.

Chronic granulomatous disease (CGD)
CGD is characterized by recurrent life-threatening infec-
tions by bacteria and fungi, due to severely impaired
phagocyte intracellular destruction. CGD is caused by
defects of NADPH (nicotinamide adenine dinucleotide
phosphate) oxidase system, which is responsible for the
generation of superoxide and other reactive oxygen spe-
cies in phagocytic cells. The X-linked form, caused by
mutations of the CYBB gene, accounts for more than
75% of the cases [42]. In the large U.S. series of 368
CGD patients, ten (2.7%) affected patients presented
concomitantly discoid lupus (DLE) and 2 (0.5%) SLE. A
large number of first-degree female relatives were also
reported as having SLE or discoid lupus, while infection
susceptibility was not increased. Cale et al. [43] investi-
gated 19 mothers who carried the X-linked CGD allele
for the presence of lupus manifestations. Remarkably, 12
of them presented photosensitivity, seven arthralgia, and
eight had mouth ulcers. Anti-nuclear antibodies were
positive in five, one had anti-dsDNA and another a
lupus anticoagulant. The link between CYBB mutation
and lupus may arise from the apoptosis defect of neutro-
phils in CGD patients, characterized by an impaired ex-
posure of phosphatidyl serine on neutrophil membrane
[44]. Moreover, in CGD neutrophil apoptosis is asso-
ciated to diminished production of anti-inflammatory
mediators [5]. Of note, neutrophils are now have been
shown to be important in lupus pathogenesis, especially
since mature SLE neutrophils are primed in vivo by type
I IFN and die upon exposure to SLE-derived anti-ribo-
nucleoprotein antibodies, releasing neutrophil extracel-
lular traps (NETs) which contain DNA as well as large
amounts of proteins that facilitate the uptake and recog-
nition of mammalian DNA by plasmacytoid dendritic
cells [45]. Indeed, SLE NETs activate pDCs to produce
high levels of IFN-α in a DNA- and Toll-like receptor
9-dependent manner.
Altogether, these data might suggest that CYBB and

other CGD-related genes could be lupus-susceptibility
genes.

Conclusions
Early onset lupus, familial lupus and syndromic lupus
are rare situations that can lead to the identification of a
unique gene responsible for the disease. Identification of
this monogenic susceptibility to lupus can help to under-
stand both lupus pathogenesis and tolerance breakdown
in human immunology. To date, complement system de-
ficiency, apoptosis defects and interferon overproduction
have been confirmed as responsible for susceptibility to
lupus. New genetic techniques such as exome sequen-
cing could help to discover new genes and give insights
in understanding SLE pathogenesis as well as molecular
mechanisms of tolerance maintenance.
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