8,051 research outputs found

    Impaired clearance of ceftizoxime and cefotaxime after orthotopic liver transplantation.

    Get PDF
    The pharmacokinetics of ceftizoxime (CZX) and of cefotaxime (CTX) were studied in five children and five adults after orthotopic liver transplantation (OLT). Delayed clearance of CZX (clearance of 0.21 to 1.26 ml/min per kg [body weight]) and CTX (clearance of 0.40 to 1.49 ml/min per kg) occurred in 7 of the 10 OLT patients. We conclude that abnormal CZX and CTX clearance is common after OLT and may be associated with minimal change in serum creatinine

    Simple non-mydriatic retinal photography is feasible and demonstrates retinal microvascular dilation in Chronic Obstructive Pulmonary Disease (COPD).

    Get PDF
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is associated with an increased risk of myocardial infarction and stroke but it remains unclear how to identify microvascular changes in this population. OBJECTIVES: We hypothesized that simple non-mydriatic retinal photography is feasible and can be used to assess microvascular damage in COPD. METHODS: Novel Vascular Manifestations of COPD was a prospective study comparing smokers with and without COPD, matched for age. Non-mydriatic, retinal fundus photographs were assessed using semi-automated software. RESULTS: Retinal images from 24 COPD and 22 control participants were compared. Cases were of similar age to controls (65.2 vs. 63.1 years, p = 0.38), had significantly lower Forced Expiratory Volume in one second (FEV1) (53.4 vs 100.1% predicted; p < 0.001) and smoked more than controls (41.7 vs. 29.6 pack years; p = 0.04). COPD participants had wider mean arteriolar (155.6 ±15 uM vs. controls [142.2 ± 12 uM]; p = 0.002) and venular diameters (216.8 ±20.7 uM vs. [201.3± 19.1 uM]; p = 0.012). Differences in retinal vessel caliber were independent of confounders, odds ratios (OR) = 1.08 (95% confidence intervals [CI] = 1.02, 1.13; p = 0.007) and OR = 1.05 (CI = 1.01, 1.09; p = 0.011) per uM increase in arteriolar and venular diameter respectively. FEV1 remained significantly associated with retinal vessel dilatation r = -0.39 (p = 0.02). CONCLUSIONS: Non-mydriatic retinal imaging is easily facilitated. We found significant arteriole and venous dilation in COPD compared to age-matched smokers without COPD associated with lung function independent of standard cardiovascular risk factors. Retinal microvascular changes are known to be strongly associated with future vascular events and retinal photography offers potential to identify this risk. TRIAL REGISTRATION: clinicaltrials.gov NCT02060292

    The relationship between reductions in knee loading and immediate pain response whilst wearing lateral wedged insoles in knee osteoarthritis

    Get PDF
    Studies of lateral wedge insoles (LWIs) in medial knee osteoarthritis (OA) have shown reductions in the average external knee adduction moment (EKAM) but no lessening of knee pain. Some treated patients actually experience increases in the EKAM which could explain the overall absence of pain response. We examined whether, in patients with painful medial OA, reductions in the EKAM were associated with lessening of knee pain. Each patient underwent gait analysis whilst walking in a control shoe and two LWI's. We evaluated the relationship between change in EKAM and change in knee pain using Spearman Rank Correlation coefficients and tested whether dichotomizing patients into biomechanical responders (decreased EKAM) and non-responders (increased EKAM) would identify those with reductions in knee pain. In 70 patients studied, the EKAM was reduced in both LWIs versus control shoe (−5.21% and −6.29% for typical and supported wedges, respectively). The change in EKAM using LWIs was not significantly associated with the direction of knee pain change. Further, 54% were biomechanical responders, but these persons did not have more knee pain reduction than non-responders. Whilst LWIs reduce EKAM, there is no clearcut relationship between change in medial load when wearing LWIs and corresponding change in knee pain

    Field cancerization in breast cancer

    Get PDF
    Breast cancer affects one in seven women worldwide during their lifetime. Widespread mammographic screening programs and education campaigns allow for early detection of the disease, often during its asymptomatic phase. Current practice in treatment and recurrence monitoring is based primarily on pathological evaluations but can also encompass genomic evaluations, both of which focus on the primary tumor. Although breast cancer is one of the most studied cancers, patients still recur at a rate of up to 15% within the first 10 years post‐surgery. Local recurrence was originally attributed to tumor cells contaminating histologically normal (HN) tissues beyond the surgical margin, but advances in technology have allowed for the identification of distinct aberrations that exist in the peri‐tumoral tissues themselves. One leading theory to explain this phenomenon is the field cancerization theory. Under this hypothesis, tumors arise from a field of molecularly altered cells that create a permissive environment for malignant evolution, which can occur with or without morphological changes. The traditional histopathology paradigm dictates that molecular alterations are reflected in the tissue phenotype. However, the spectrum of inter‐patient variability of normal breast tissue may obfuscate recognition of a cancerized field during routine diagnostics. In this review, we explore the concept of field cancerization focusing on HN peri‐tumoral tissues: we present the pathological and molecular features of field cancerization within these tissues and discuss how the use of peri‐tumoral tissues can affect research. Our observations suggest that pathological and molecular evaluations could be used synergistically to assess risk and guide the therapeutic management of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    An inductive force sensor for in-shoe plantar normal and shear load measurement

    Get PDF
    Diabetic foot ulcers (DFUs) are a severe global public health issue. Plantar normal and shear load are believed to play an important role in the development of foot ulcers and could be a valuable indicator to improve assessment of DFUs. However, despite their promise, plantar load measurements currently have limited clinical application, primarily due to the lack of reliable measurement techniques particularly for shear load measurements. In this paper we report on the design and evaluation of a novel tri-axis force sensor to measure both normal and shear load on the foot’s plantar surface simultaneously. The sensor consists of a group of inductive sensing coils above which a conductive target is placed on a hyperelastic elastomer. Movement of the target under load affects the coil inductances which are measured and digitized by an embedded system. Using a computational finite element model, we investigated the influence of sensing coil form and configuration on sensor performance. A sensor configured with four-square coils and maximal turns provided the best performance for plantar load measurements. A prototype was fabricated and calibrated using a neural network to map the non-linear relationship between the sensor output and the applied tri-axis load. Experimental evaluation indicates that the tri-axis sensor can effectively detect shear load of �16 N and normal load up to 105 N (RMS errors: 1.05 N and 1.73 N respectively) with a high performance. Overall, this sensor provides a promising basis for plantar normal and shear load measurement which are crucial for improved assessment of DFU
    corecore