22 research outputs found

    Mechanochemical synthesis of carbon-stabilized Cu/C, Co/C and Ni/C nanocomposites with prolonged resistance to oxidation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The authors declare that all relevant data are included in the paper and in Supplementary Information files.Metal-carbon nanocomposites possess attractive physical-chemical properties compared to their macroscopic counterparts. They are important and unique nanosystems with applications including in the future development of nanomaterial enabled sensors, polymer fillers for electromagnetic radiation shields, and catalysts for various chemical reactions. However, synthesis of these nanocomposites typically employs toxic solvents and hazardous precursors, leading to environmental and health concerns. Together with the complexity of the synthetic processes involved, it is clear that a new synthesis route is required. Herein, Cu/C, Ni/C and Co/C nanocomposites were synthesized using a two-step method including mechanochemical treatment of polyethylene glycol and acetates of copper, nickel and cobalt, followed by pyrolysis of the mixtures in an argon flow at 700 °C. Morphological and structural analysis of the synthesized nanocomposites show their core-shell nature with average crystallite sizes of 50 (Cu/C), 18 (Co/C) and 20 nm (Ni/C) respectively. The carbon shell originates from disordered sp2 carbon (5.2–17.2 wt.%) with a low graphitization degree. The stability and prolonged resistance of composites to oxidation in air arise from the complete embedding of the metal core into the carbon shell together with the presence of surface oxide layer of metal nanoparticles. This approach demonstrates an environmentally friendly method of mechanochemistry for controllable synthesis of metal-carbon nanocomposites.Engineering and Physical Sciences Research Council (EPSRC)International Visegrad Fun

    FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is a vibrational spectroscopic technique that uses infrared radiation to vibrate molecular bonds within the sample that absorbs it. As different samples contain different molecular bonds or different configurations of molecular bonds, FTIR allows us to obtain chemical information on molecules within the sample. Fourier transform infrared microspectroscopy in conjunction with a principal component-discriminant function analysis (PC-DFA) algorithm was applied to the grading of prostate cancer (CaP) tissue specimens. The PC-DFA algorithm is used alongside the established diagnostic measures of Gleason grading and the tumour/node/metastasis system. Principal component-discriminant function analysis improved the sensitivity and specificity of a three-band Gleason score criterion diagnosis previously reported by attaining an overall sensitivity of 92.3% and specificity of 99.4%. For the first time, we present the use of a two-band criterion showing an association of FTIR-based spectral characteristics with clinically aggressive behaviour in CaP manifest as local and/or distal spread. This paper shows the potential for the use of spectroscopic analysis for the evaluation of the biopotential of CaP in an accurate and reproducible manner

    Biochemical applications of surface-enhanced infrared absorption spectroscopy

    Get PDF
    An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. [Figure: see text
    corecore