99 research outputs found

    Spin polarized tunneling in ferromagnet/unconventional superconductor junctions

    Full text link
    We study tunneling in ferromagnet/unconventional superconductor (F/S) junctions. We include the effects of spin polarization, interfacial resistance, and Fermi wavevector mismatch (FWM) between the F and S regions. Andreev reflection (AR) at the F/S interface, governing tunneling at low bias voltage, is strongly modified by these parameters. The conductance exhibits a very wide variety of features as a function of applied voltage.Comment: Revision includes new figures with angular averages and correction of minor error

    Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    Get PDF
    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham and Klapwijk. An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle of incidence above which only normal reflection exists. For two and three-dimensional interfaces a lower excess current compared to ballistic transport with perpendicular incidence is found. Thus, the one-dimensional BTK model overestimates the barrier strength for two and three-dimensional interfaces.Comment: 8 pages including 3 figures (revised, 6 references added

    Theory of anomalous magnetic interference pattern in mesoscopic SNS Josephson junctions

    Get PDF
    The magnetic interference pattern in mesoscopic SNS Josephson junctions is sensitive to the scattering in the normal part of the system. In this paper we investigate it, generalizing Ishii's formula for current-phase dependence to the case of normal scattering at NS boundaries in an SNS junction of finite width. The resulting flattening of the first diffraction peak is consistent with experimental data for S-2DEG-S mesoscopic junctions.Comment: 6 pages, 5 figures. Phys. Rev. B 68, 144514 (2003

    Theory of Andreev reflection in a junction with a strongly disordered semiconductor

    Full text link
    We study the conduction of a {\sl N~-~Sm~-~S} junction, where {\sl Sm} is a strongly disordered semiconductor. The differential conductance dI/dVdI/dV of this {\sl N~-~Sm~-~S} structure is predicted to have a sharp peak at V=0V=0. Unlike the case of a weakly disordered system, this feature persists even in the absence of an additional (Schottky) barrier on the boundary. The zero-bias conductance of such a junction GNSG_{NS} is smaller only by a numerical factor than the conductance in the normal state GNG_N. Implications for experiments on gated heterostructures with superconducting leads are discussed.Comment: 4 pages, 2 figures, to appear in Rapid Communication section of Phys. Rev.

    Andreev Reflections in Micrometer-Scale Normal-Insulator-Superconductor Tunnel Junctions

    Full text link
    Understanding the subgap behavior of Normal-Insulator-Superconductor (NIS) tunnel junctions is important in order to be able to accurately model the thermal properties of the junctions. Hekking and Nazarov developed a theory in which NIS subgap current in thin-film structures can be modeled by multiple Andreev reflections. In their theory, the current due to Andreev reflections depends on the junction area and the junction resistance area product. We have measured the current due to Andreev reflections in NIS tunnel junctions for various junction sizes and junction resistance area products and found that the multiple reflection theory is in agreement with our data

    Magnetoconductance Oscillations in Ballistic Semiconductor-Superconductor Junctions

    Full text link
    The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused by the magnetic field is the origin of the conductance oscillations.Comment: 4 pages, 4 figure

    Negative 4-Probe Conductances of Mesoscopic Superconducting Wires

    Full text link
    We analyze the longitudinal 4-probe conductance of mesoscopic normal and superconducting wires and predict that in the superconducting case, large negative values can arise for both the weakly disordered and localized regimes. This contrasts sharply with the behaviour of the longitudinal 4-probe conductance of normal wires, which in the localized limit is always exponentially small and positive.Comment: Latex, 3 figures available on request to [email protected] (Simon Robinson

    Energy Gap from Tunneling and Metallic Sharvin Contacts onto MgB2: Evidence for a Weakened Surface Layer

    Full text link
    Point-contact tunnel junctions using a Au tip on sintered MgB2 pellets reveal a sharp superconducting energy gap that is confirmed by subsequent metallic Sharvin contacts made on the same sample. The peak in the tunneling conductance and the Sharvin contact conductance follow the BCS form, but the gap values of 4.3 meV are less than the weak-coupling BCS value of 5.9 meV for the bulk Tc of 39 K. The low value of Delta compared to the BCS value for the bulk Tc is possibly due to chemical reactions at the surface.Comment: 3 pages, 3 figure

    Coherent effects in double-barrier Josephson junctions

    Full text link
    The general solution for ballistic electronic transport through double-barrier Josephson junctions is derived. We show the existence of a regime of phase-coherent transport in which the supercurrent is proportional to the single barrier transparency and the way in which this coherence is destroyed for increasing interlayer thickness. The quasiparticle dc current at arbitrary voltage is determined.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Tunneling conductance in strained graphene-based superconductor: Effect of asymmetric Weyl-Dirac fermions

    Full text link
    Based on the BTK theory, we investigate the tunneling conductance in a uniaxially strained graphene-based normal metal (NG)/ barrier (I)/superconductor (SG) junctions. In the present model, we assume that depositing the conventional superconductor on the top of the uniaxially strained graphene, normal graphene may turn to superconducting graphene with the Cooper pairs formed by the asymmetric Weyl-Dirac electrons, the massless fermions with direction-dependent velocity. The highly asymmetrical velocity, vy/vx>>1, may be created by strain in the zigzag direction near the transition point between gapless and gapped graphene. In the case of the highly asymmetrical velocity, we find that the Andreev reflection strongly depends on the direction and the current perpendicular to the direction of strain can flow in the junction as if there was no barrier. Also, the current parallel to the direction of strain anomalously oscillates as a function of the gate voltage with very high frequency. Our predicted result is found as quite different from the feature of the quasiparticle tunneling in the unstrained graphene-based NG/I/SG conventional junction. This is because of the presence of the direction-dependent-velocity quasiparticles in the highly strained graphene system.Comment: 18 pages, 7 Figures; Eq.13 and 14 are correcte
    • …
    corecore