46 research outputs found

    Circular orbits of corotating binary black holes: comparison between analytical and numerical results

    Get PDF
    We compare recent numerical results, obtained within a ``helical Killing vector'' (HKV) approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of resummation method for the EOB ``effective potential'', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant ``merging'' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the ``flexibility'' of the EOB approach, i.e. the possibility of determining some ``best fit'' values for the analytical parameters by comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages, 6 figure

    Time-symmetric initial data for binary black holes in numerical relativity

    Full text link
    We look for physically realistic initial data in numerical relativity which are in agreement with post-Newtonian approximations. We propose a particular solution of the time-symmetric constraint equation, appropriate to two momentarily static black holes, in the form of a conformal decomposition of the spatial metric. This solution is isometric to the post-Newtonian metric up to the 2PN order. It represents a non-linear deformation of the solution of Brill and Lindquist, i.e. an asymptotically flat region is connected to two asymptotically flat (in a certain weak sense) sheets, that are the images of the two singularities through appropriate inversion transformations. The total ADM mass M as well as the individual masses m_1 and m_2 (when they exist) are computed by surface integrals performed at infinity. Using second order perturbation theory on the Brill-Lindquist background, we prove that the binary's interacting mass-energy M-m_1-m_2 is well-defined at the 2PN order and in agreement with the known post-Newtonian result.Comment: 27 pages, to appear in Phys. Rev.

    A skeleton approximate solution of the Einstein field equations for multiple black-hole systems

    Full text link
    An approximate analytical and non-linear solution of the Einstein field equations is derived for a system of multiple non-rotating black holes. The associated space-time has the same asymptotic structure as the Brill-Lindquist initial data solution for multiple black holes. The system admits an Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the Brill-Lindquist solution over finite time intervals. The gravitational field of this model may properly be referred to as a skeleton approximate solution of the Einstein field equations. The approximation is based on a conformally flat truncation, which excludes gravitational radiation, as well as a removal of some additional gravitational field energy. After these two simplifications, only source terms proportional to Dirac delta distributions remain in the constraint equations. The skeleton Hamiltonian is exact in the test-body limit, it leads to the Einsteinian dynamics up to the first post-Newtonian approximation, and in the time-symmetric limit it gives the energy of the Brill-Lindquist solution exactly. The skeleton model for binary systems may be regarded as a kind of analytical counterpart to the numerical treatment of orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon, Grandclement, and Bonazzola, even if they actually treat the corotating case. Along circular orbits, the two-black-hole skeleton solution is quasi-stationary and it fulfills the important property of equality of Komar and ADM masses. Explicit calculations for the determination of the last stable circular orbit of the binary system are performed up to the tenth post-Newtonian order within the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added, minor correction

    Gravitational waves from inspiralling compact binaries: Parameter estimation using second-post-Newtonian waveforms

    Get PDF
    The parameters of inspiralling compact binaries can be estimated using matched filtering of gravitational-waveform templates against the output of laser-interferometric gravitational-wave detectors. Using a recently calculated formula, accurate to second post-Newtonian (2PN) order [order (v/c)4(v/c)^4, where vv is the orbital velocity], for the frequency sweep (dF/dtdF/dt) induced by gravitational radiation damping, we study the statistical errors in the determination of such source parameters as the ``chirp mass'' M\cal M, reduced mass μ\mu, and spin parameters β\beta and σ\sigma (related to spin-orbit and spin-spin effects, respectively). We find that previous results using template phasing accurate to 1.5PN order actually underestimated the errors in M\cal M, μ\mu, and β\beta. For two inspiralling neutron stars, the measurement errors increase by less than 16 percent.Comment: 14 pages, ReVTe

    Numerically generated quasi-equilibrium orbits of black holes: Circular or eccentric?

    Get PDF
    We make a comparison between results from numerically generated, quasi-equilibrium configurations of compact binary systems of black holes in close orbits, and results from the post-Newtonian approximation. The post-Newtonian results are accurate through third PN order (O(v/c)^6 beyond Newtonian gravity), and include rotational and spin-orbit effects, but are generalized to permit orbits of non-zero eccentricity. Both treatments ignore gravitational radiation reaction. The energy E and angular momentum J of a given configuration are compared between the two methods as a function of the orbital angular frequency \Omega. For small \Omega, corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that, if the orbit is permitted to be slightly eccentric, with e ranging from \approx 0.03 to \approx 0.05, and with the two objects initially located at the orbital apocenter (maximum separation), our PN formulae give much better fits to the numerically generated data than do any circular-orbit PN methods, including various ``effective one-body'' resummation techniques. We speculate that the approximations made in solving the initial value equations of general relativity numerically may introduce a spurious eccentricity into the orbits.Comment: 6 pages, 4 figures, to be submitted to Phys. Rev.

    On the Circular Orbit Approximation for Binary Compact Objects In General Relativity

    Full text link
    One often-used approximation in the study of binary compact objects (i.e., black holes and neutron stars) in general relativity is the instantaneously circular orbit assumption. This approximation has been used extensively, from the calculation of innermost circular orbits to the construction of initial data for numerical relativity calculations. While this assumption is inconsistent with generic general relativistic astrophysical inspiral phenomena where the dissipative effects of gravitational radiation cause the separation of the compact objects to decrease in time, it is usually argued that the timescale of this dissipation is much longer than the orbital timescale so that the approximation of circular orbits is valid. Here, we quantitatively analyze this approximation using a post-Newtonian approach that includes terms up to order ({Gm/(rc^2)})^{9/2} for non-spinning particles. By calculating the evolution of equal mass black hole / black hole binary systems starting with circular orbit configurations and comparing them to the more astrophysically relevant quasicircular solutions, we show that a minimum initial separation corresponding to at least 6 (3.5) orbits before plunge is required in order to bound the detection event loss rate in gravitational wave detectors to < 5% (20%). In addition, we show that the detection event loss rate is > 95% for a range of initial separations that include all modern calculations of the innermost circular orbit (ICO).Comment: 10 pages, 12 figures, revtex

    Comparing Criteria for Circular Orbits in General Relativity

    Get PDF
    We study a simple analytic solution to Einstein's field equations describing a thin spherical shell consisting of collisionless particles in circular orbit. We then apply two independent criteria for the identification of circular orbits, which have recently been used in the numerical construction of binary black hole solutions, and find that both yield equivalent results. Our calculation illustrates these two criteria in a particularly transparent framework and provides further evidence that the deviations found in those numerical binary black hole solutions are not caused by the different criteria for circular orbits.Comment: 4 pages; to appear in PRD as a Brief Report; added and corrected reference

    Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion

    Full text link
    A particle of mass μ\mu moves on a circular orbit around a nonrotating black hole of mass MM. Under the assumption μM\mu \ll M the gravitational waves emitted by such a binary system can be calculated exactly numerically using black-hole perturbation theory. If, further, the particle is slowly moving, then the waves can be calculated approximately analytically, and expressed in the form of a post-Newtonian expansion. We determine the accuracy of this expansion in a quantitative way by calculating the reduction in signal-to-noise ratio incurred when matched filtering the exact signal with a nonoptimal, post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in the computer code used to generate the results presented in the paper. The corrected results are presented in an Erratum, which also incorporates new results, obtained using the recently improved post-Newtonian calculations of Tanaka, Tagoshi, and Sasak

    Binary black hole initial data for numerical general relativity based on post-Newtonian data

    Get PDF
    With the goal of taking a step toward the construction of astrophysically realistic initial data for numerical simulations of black holes, we for the first time derive a family of fully general relativistic initial data based on post-2-Newtonian expansions of the 3-metric and extrinsic curvature without spin. It is expected that such initial data provide a direct connection with the early inspiral phase of the binary system. We discuss a straightforward numerical implementation, which is based on a generalized puncture method. Furthermore, we suggest a method to address some of the inherent ambiguity in mapping post-Newtonian data onto a solution of the general relativistic constraints.Comment: 13 pages, 8 figures, RevTex

    Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture

    Full text link
    Sequences of initial-data sets representing binary black holes in quasi-circular orbits have been used to calculate what may be interpreted as the innermost stable circular orbit. These sequences have been computed with two approaches. One method is based on the traditional conformal-transverse-traceless decomposition and locates quasi-circular orbits from the turning points in an effective potential. The second method uses a conformal-thin-sandwich decomposition and determines quasi-circular orbits by requiring the existence of an approximate helical Killing vector. Although the parameters defining the innermost stable circular orbit obtained from these two methods differ significantly, both approaches yield approximately the same initial data, as the separation of the binary system increases. To help understanding this agreement between data sets, we consider the case of initial data representing a single boosted or spinning black hole puncture of the Bowen-York type and show that the conformal-transverse-traceless and conformal-thin-sandwich methods yield identical data, both satisfying the conditions for the existence of an approximate Killing vector.Comment: 13 pages, 2 figure
    corecore