344 research outputs found

    Fertimetro, a Principle and Device to Measure Soil Nutrient Availability for Plants by Microbial Degradation Rates on Differently-Spiked Buried Threads

    Get PDF
    A novel patented method (PCT/IB2012/001157: Squartini, Concheri, Tiozzo, University of Padova) and the corresponding application devices, suitable to measure soil fertility, are presented. The availability or deficiency of specific nutrients for crops is assessed by monitoring the kinetics of progressive weakening of cotton or silk threads due to in situ microbial activity. The method is based on a nutrient-primed incremented substrate degradation principle. Threads are buried as is or pre-impregnated with N or P solutions, and the acceleration of the degradation rate for the N-supplemented or P-supplemented thread, in comparison to the untreated thread, is proportional to the lack of the corresponding nutrient in that soil. Tests were validated on corn crops in plots receiving increasing fertilizer rates in a historical rotation that has been established since 1962. The measurement carried out in May significantly correlated with the subsequent crop yields recorded in October. The analysis allows an early, inexpensive, fast, and reproducible self-assessment at field level to improve fertilization rates. The device is envisaged as a user-friendly tool for agronomy, horticulture, and any environmental applications where organic matter cycling, soil quality, and specific nutrients excess or deficiency are critical considerations

    Bifid median nerve: report of two cases

    Get PDF
    The median nerve divides into its terminal branches at or proximal to the distal edge of the flexor retinaculum. An anatomy of the median nerve within the carpal tunnel is reported in two separate cases. Emphasis has been given to the value of direct vision when incising the flexor retinaculum in order to avoid injure of the median nerve

    Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest

    Get PDF
    Inulin is an important polysaccharide synthesised by different crops, which, in the EU has been included in the system of sugar quotas since 1994. Currently, one of the major problems of the agro-industry is the need to extend the length of the sugar crop harvest season. It was therefore decided, also in relation to the increased demand for inulin, to study the two main inulin producing crops in Italy (chicory and Jerusalem artichoke), to verify yield and quality potential and stability in relation to some important agronomic factors such as irrigation and time of harvest. The work was conducted in 1999 and 2000 in four areas of Italy (Udine, Rovigo, Bologna and Bari). The effects evaluated were time of harvest (3 for chicory and 2 for Jerusalem artichoke) and irrigation system (evapotranspiration replacement and dry regime, with irrigation applied only when strictly necessary) on the production of storage organs, sugars and inulin in the two crops. The highest chicory root yield was in Bologna, with an average production of 65.6 t ha -1 (fresh weight), compared to Rovigo (54.4 t ha -1 ), Bari (46.5 t ha -1 ) and Udine (38.7 t ha -1). For final tuber yield in Jerusalem artichoke, Bari was the most productive environment with an average of 80 t ha -1 , followed by Bologna (61 t ha -1 ) and Udine (55.5 t ha -1 ). However, when this crop is whole-plant harvested (stalks and tubers) at pre-flowering, Bologna, with high stalk yields (58.7 t ha -1) appeared to be the most suitable environment. This type of harvesting was also shown to be more productive in terms of sugar and inulin yield. The total sugar content in the different organs analysed (roots, stalk and tubers) was always higher in Udine compared to Bologna, for both crops. Lastly, the length of the inulin chain (average degree of polymerisation [DP]) diminishes with the delaying of the harvest in both crops. The Bologna area had the highest potential in terms of chicory root production, while for the tubers yield of Jerusalem artichoke, the Bari environment was the most productive. But, when Jerusalem artichoke is instead considered as a crop for whole-plant harvest (stalks and tubers), Bologna, with a very high stalk yields, becomes the most suitable area. The highest sugar content in roots, stalks and tubers of both crops was found in the Udine tria

    Ultrasound-assisted cold pasteurization in liquid or SC-CO2

    Get PDF
    Various types of chemical and physical protocols are used, thermal treatment in particular, to increase the quality of bulk food products (for example, dates or some sort of nuts) and extend shelf life, and combinations of methods are frequently used to achieve the best results. However, the use of these processing methods is not always the best option to preserve the initial taste and appearance of food products. For instance, a product may lose its initial natural appearance and acquire different flavors due to chemical transformations that occur at certain temperatures or when the products are treated with chemicals. Non-thermal treatment methods are called “cold” pasteurization. This is a set of advanced techniques that are based on physical and chemical effects that do not result in the structural food-product transformations caused by heating. We have developed and tested a new technique for efficient food-product processing and cold pasteurization in an ultrasonic field under pressure in an atmosphere of supercritical or subcritical carbon dioxide. A laboratory-scale unit that was designed and built for this purpose has experimentally proven the feasibility of this process and demonstrated high efficiency in suppressing pathogenic flora

    Special nuclear material detection studies with the SMANDRA mobile system

    Get PDF
    The detection of special nuclear material has been studied with the SMANDRA mobile inspection system used both as a high sensitivity passive neutron/gamma spectroscopic tool and as an active inspection device using tagged neutrons. The detection of plutonium samples is possible with passive interrogation, the passive detection of uranium being much more difficult because of the low neutron yield and of the easiness of shielding the gamma rays. However, we show that active interrogation with tagged neutrons is able to provide signatures for the discrimination of uranium against other materials

    Efficacy and Safety of Human Retinal Progenitor Cells.

    Get PDF
    PURPOSE: We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. METHODS: Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. RESULTS: The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. CONCLUSIONS: Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. TRANSLATIONAL RELEVANCE: Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies

    Expression profiling of candidate genes in sugar beet leaves treated with leonardite-based biostimulant

    Get PDF
    Leonardite-based biostimulants are a large class of compounds, including humic acid substances. Foliar application of biostimulants at field level improves plant growth, yield and quality through metabolic changes and stimulation of plant proton pumps. The present study aimed at identifying optimum dosage of BLACKJAK, a humic acid-based substance, which is able to modify genes involved in sugar beet growth. Thirty-three genes belonging to various biochemical pathway categories were tested in leaves of treated sugar beet (Beta vulgaris L.) samples to assess gene expression profiling in response to BLACKJAK. Seedlings of a diploid and multigerm variety were grown in plastic pots and sprayed with two dilutions of BLACKJAK (dilution 1:500-1.0 mg C L-1 and dilution 1:1000-0.5 mg C L-1). Leaf samples were collected after 24, 48, and 72 h treatment with BLACKJAK for each dilution. RNA was extracted and the quantification of gene expression was performed while using an OpenArray platform. Results of analysis of variance demonstrated that, 15 genes out of a total of 33 genes tested with OpenArray qPCR were significantly affected by treatment and exposure time. Analysis for annotation of gene products and pathways revealed that genes belonging to the mitochondrial respiratory pathways, nitrogen and hormone metabolisms, and nutrient uptake were up-regulated in the BLACKJAK treated samples. Among the up-regulated genes, Bv_PHT2;1 and Bv_GLN1 expression exerted a 2-fold change in 1:1000 and 1:500 BLACKJAK concentrations. Overall, the gene expression data in the BLACKJAK treated leaves demonstrated the induction of plant growth-related genes that were contributed almost to amino acid and nitrogen metabolism, plant defense system, and plant growth

    Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1-C-13-Pyruvate-d(3)

    Get PDF
    The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13C-pyruvate-d3, which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism
    • …
    corecore