1,806 research outputs found
Wave shapes in alternating DSC
ADSC with its periodical temperature programs combines the features of DSC measured at high heating rate (high sensitivity) with those at low heating rate (high temperature resolution). In addition, the "reversing” cp effects can be separated from the "non-reversing” latent heat effects. Various periodical temperature programs can be applied. This paper compares the different possible temperature programs and their algorithms for the cp determination for metal, metal oxide and polymer of various properties. Simulated and measured results for various wave shapes and samples are presented. The relevant sample properties and their influence on the measurements are identified and guiding rules for the proper choice of the various experimental parameters are given. Measurements with different samples, performed with the new METTLER TOLEDO STARe-System, are shown and compared with the simulation results. The simulations and the measurements clearly show that the alternating techniques can yield new information about sample properties, but are susceptible to the proper choice of the various experimental parameter
Thermodynamic evidence of fractionalized excitations in {\alpha}-RuCl3
Fractionalized excitations are of considerable interest in recent
condensed-matter physics. Fractionalization of the spin degrees of freedom into
localized and itinerant Majorana fermions are predicted for the Kitaev spin
liquid, an exactly solvable model with bond-dependent interactions on a
two-dimensional honeycomb lattice. As function of temperature, theory predicts
a characteristic two-peak structure of the heat capacity as fingerprint of
these excitations. Here we report on detailed heat-capacity experiments as
function of temperature and magnetic field in high-quality single crystals of
{\alpha}-RuCl3 and undertook considerable efforts to determine the exact phonon
background. We measured single-crystalline RhCl3 as non-magnetic reference and
performed ab-initio calculations of the phonon density of states for both
compounds. These ab-initio calculations document that the intrinsic phonon
contribution to the heat capacity cannot be obtained by a simple rescaling of
the nonmagnetic reference using differences in the atomic masses. Sizable
renormalization is required even for non-magnetic RhCl3 with its minute
difference from the title compound. In {\alpha}-RuCl3 in zero magnetic field,
excess heat capacity exists at temperatures well above the onset of magnetic
order. In external magnetic fields far beyond quantum criticality, when
long-range magnetic order is fully suppressed, the excess heat capacity
exhibits the characteristic two-peak structure. In zero field, the lower peak
just appears at temperatures around the onset of magnetic order and seems to be
connected with canonical spin degrees of freedom. At higher fields, beyond the
critical field, this peak is shifted to 10 K. The high-temperature peak located
around 50 K is hardly influenced by external magnetic fields, carries the
predicted amount of entropy, R/2 ln2, and may resemble remnants of Kitaev
physics
Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor.
TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion
Anharmonicity and asymmetry of Landau levels for a two-dimensional electron gas
We calculate the density of states of a two dimensional electron gas located
at the interface of a GaAlAs/GaAs heterojunction. The disorder potential which
is generally created by a single doping layer behind a spacer, is here enhanced
by the presence of a second delta doped layer of scatterers which can be
repulsive or attractive impurities. We have calculated the density of states by
means of the Klauder's approximation, in the presence of a magnetic field of
arbitrary strength. At low field either band tails or impurity bands are
observed for attractive potentials, depending on the impurity concentration. At
higher field, impurity bands are observed for both repulsive and attractive
potentials. We discuss the effect of such an asymmetrical density of states on
the transport properties in the quantum Hall effect regime.Comment: 22 pages, 12 figures. submitted to Phys. Rev.
Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010
The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together
the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in
the coming decade and beyond.<p></p>
The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p>
Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p>
The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation
with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations
are presented on the following pages. For the interested public, a short summary brochure has been produced to
accompany the Forward Look.<p></p>
HDLs protect the MIN6 insulinoma cell line against tunicamycin-induced apoptosis without inhibiting ER stress and without restoring ER functionality.
HDLs protect pancreatic beta cells against apoptosis induced by several endoplasmic reticulum (ER) stressors, including thapsigargin, cyclopiazonic acid, palmitate and insulin over-expression. This protection is mediated by the capacity of HDLs to maintain proper ER morphology and ER functions such as protein folding and trafficking. Here, we identified a distinct mode of protection exerted by HDLs in beta cells challenged with tunicamycin (TM), a protein glycosylation inhibitor inducing ER stress. HDLs were found to inhibit apoptosis induced by TM in the MIN6 insulinoma cell line and this correlated with the maintenance of a normal ER morphology. Surprisingly however, this protective response was neither associated with a significant ER stress reduction, nor with restoration of protein folding and trafficking in the ER. These data indicate that HDLs can use at least two mechanisms to protect beta cells against ER stressors. One that relies on the maintenance of ER function and one that operates independently of ER function modulation. The capacity of HDLs to activate several anti-apoptotic pathways in beta cells may explain their ability to efficiently protect these cells against a variety of insults
Evidence for a Ru Kondo Lattice in LaCuRuO
Rare -electron derived heavy-fermion properties of the solid-solution
series LaCuRuTiO were studied for by
resistivity, susceptibility, specific-heat measurements, and magnetic-resonance
techniques. The pure ruthenate () is a heavy-fermion metal characterized
by a resistivity proportional to at low temperatures . The coherent
Kondo lattice formed by the localized Ru 4 electrons is screened by the
conduction electrons leading to strongly enhanced effective electron masses. By
increasing titanium substitution the Kondo lattice becomes diluted resulting in
single-ion Kondo properties like in the paradigm -based heavy-fermion
compound CeLaCuSi [M. Ocko {\em et al.}, Phys. Rev. B
\textbf{64}, 195106 (2001)]. In LaCuRuTiO the
heavy-fermion behavior finally breaks down on crossing the metal-to-insulator
transition close to .Comment: 9 pages, 8 figure
Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium
Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past. <br><br> Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging) are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode
- …