1,052 research outputs found

    How to Avoid Medication Errors: Investigating the Roles of Policies and Nudging from A Stress Perspective

    Get PDF
    According to the World Health Organization (WHO), one of the most frequently occurring error types in healthcare are medication errors which arise due to manual data transfers and time pressure when transferring the data. Errors that occur during this manual procedure often go unnoticed and can have far-reaching health-consequences for patients. To avoid human errors, the healthcare sector often relies on guidelines and policies. However, research from the field of information security found policies to be additionally increasing professionalsā€™ stress. Therefore, we aim to investigate how nudging can help to foster medical professionalsā€™ compliance without causing stress due to regulations

    Dissecting Long-Term Adjustments of Photoprotective and Photo-Oxidative Stress Acclimation Occurring in Dynamic Light Environments

    Get PDF
    Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cellsā€™ needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating) light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants) under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments

    Interaction between the Triglyceride Lipase ATGL and the Arf1 Activator GBF1

    Get PDF
    The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets

    Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system

    Get PDF
    Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1

    Robustness of pet radiomics features: Impact of co-registration with mri

    Get PDF
    Radiomics holds great promise in the field of cancer management. However, the clinical application of radiomics has been hampered by uncertainty about the robustness of the features extracted from the images. Previous studies have reported that radiomics features are sensitive to changes in voxel size resampling and interpolation, image perturbation, or slice thickness. This study aims to observe the variability of positron emission tomography (PET) radiomics features under the impact of co-registration with magnetic resonance imaging (MRI) using the difference percentage coefficient, and the Spearmanā€™s correlation coefficient for three groups of images: (i) original PET, (ii) PET after co-registration with T1-weighted MRI and (iii) PET after co-registration with FLAIR MRI. Specifically, seventeen patients with brain cancers undergoing [11C]-Methionine PET were considered. Successively, PET images were co-registered with MRI sequences and 107 features were extracted for each mentioned group of images. The variability analysis revealed that shape features, first-order features and two subgroups of higher-order features possessed a good robustness, unlike the remaining groups of features, which showed large differences in the difference percentage coeffi-cient. Furthermore, using the Spearmanā€™s correlation coefficient, approximately 40% of the selected features differed from the three mentioned groups of images. This is an important consideration for users conducting radiomics studies with image co-registration constraints to avoid errors in cancer diagnosis, prognosis, and clinical outcome prediction

    Some Notes on Granular Mixtures with Finite, Discrete Fractal Distribution

    Get PDF

    Poultry trading behaviours in Vietnamese live bird markets as risk factors for avian influenza infection in chickens

    Get PDF
    Vietnamese poultry are host to coā€circulating subtypes of avian influenza viruses, including H5N1 and H9N2, which pose a great risk to poultry productivity and to human health. AIVs circulate throughout the poultry trade network in Vietnam, with live bird markets being an integral component to this network. Traders at LBMs exhibit a variety of trading practices, which may influence the transmission of AIVs. We identified trading practices that impacted on AIV prevalence in chickens marketed in northern Vietnamese LBMs. We generated sequencing data for 31 H9N2 and 2 H5N6 viruses. Viruses isolated in the same LBM or from chickens sourced from the same province were genetically closer than viruses isolated in different LBMs or from chickens sourced in different provinces. The position of a vendor in the trading network impacted on their odds of having AIV infected chickens. Being a retailer and purchasing chickens from middlemen was associated with increased odds of infection, whereas odds decreased if vendors purchased chickens directly from large farms. Odds of infection were also higher for vendors having a greater volume of ducks unsold per day. These results indicate how the spread of AIVs is influenced by the structure of the live poultry trading network

    Coordinated Analysis of an Experimentally Space Weathered Carbonaceous Chondrite

    Get PDF
    The surfaces of airless bodies experience solar wind irradiation and micrometeorite impacts, a process collectively known as space weathering. These mechanisms alter the chemical composition, microstructure, and optical properties of surface materials and considerable work has been done to understand this phenomenon in lunar and ordinary chondritic materials. However, ongoing sample return missions Hayabusa2 to asteroid Ryugu and OSIRIS-REx to asteroid Bennu have prompted the need to study the effects of space weathering on hydrated, organic-rich materials, especially in the context of early results. Understanding space weathering of these samples is critical for properly interpreting remote sensing data during asteroid encounters, for sample site selection, and for the eventual study of returned samples. We can better understand space weathering of carbonaceous materials by simulating these processes in the laboratory. Recent experiments have shown that the changes in spectral characteristics of carbonaceous chondrites are not consistent among experiments, suggesting additional work is needed before these results can inform our understanding of spectral variations on asteroidal surfaces. Similarly, substantial work remains to characterize the chemical and microstructural effects of these processes in order to correlate these features with spectral changes. Here, we build on our previous work, presenting new results of the pulsed laser irradiation of the Murchison (CM2) meteorite to simulate micrometeorite impacts and the progressive space weathering of carbonaceous surfaces

    Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo

    Get PDF
    The fungal pathogen Candida albicans is frequently associated with catheter-based infections because of its ability to form resilient biofilms. Prior studies have shown that the transcription factor Bcr1 governs biofilm formation in an in vitro catheter model. However, the mechanistic role of the Bcr1 pathway and its relationship to biofilm formation in vivo are unknown. Our studies of biofilm formation in vitro indicate that the surface protein Als3, a known adhesin, is a key target under Bcr1 control. We show that an als3/als3 mutant is biofilm-defective in vitro, and that ALS3 overexpression rescues the biofilm defect of the bcr1/bcr1 mutant. We extend these findings with an in vivo venous catheter model. The bcr1/bcr1 mutant is unable to populate the catheter surface, though its virulence suggests that it has no growth defect in vivo. ALS3 overexpression rescues the bcr1/bcr1 biofilm defect in vivo, thus arguing that Als3 is a pivotal Bcr1 target in this setting. Surprisingly, the als3/als3 mutant forms a biofilm in vivo, and we suggest that additional Bcr1 targets compensate for the Als3 defect in vivo. Indeed, overexpression of Bcr1 targets ALS1, ECE1, and HWP1 partially restores biofilm formation in a bcr1/bcr1 mutant background in vitro, though these genes are not required for biofilm formation in vitro. Our findings demonstrate that the Bcr1 pathway functions in vivo to promote biofilm formation, and that Als3-mediated adherence is a fundamental property under Bcr1 control. Known adhesins Als1 and Hwp1 also contribute to biofilm formation, as does the novel protein Ece1
    • ā€¦
    corecore