33 research outputs found
Discrete Routh Reduction
This paper develops the theory of abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with abelian symmetry. The reduction of variational Runge-Kutta
discretizations is considered, as well as the extent to which symmetry
reduction and discretization commute. These reduced methods allow the direct
simulation of dynamical features such as relative equilibria and relative
periodic orbits that can be obscured or difficult to identify in the unreduced
dynamics. The methods are demonstrated for the dynamics of an Earth orbiting
satellite with a non-spherical correction, as well as the double
spherical pendulum. The problem is interesting because in the unreduced
picture, geometric phases inherent in the model and those due to numerical
discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, where one can directly observe interesting dynamical
structures in the reduced phase space (the cotangent bundle of shape space), in
which the geometric phases have been removed. The main feature of the double
spherical pendulum example is that it has a nontrivial magnetic term in its
reduced symplectic form. Our method is still efficient as it can directly
handle the essential non-canonical nature of the symplectic structure. In
contrast, a traditional symplectic method for canonical systems could require
repeated coordinate changes if one is evoking Darboux' theorem to transform the
symplectic structure into canonical form, thereby incurring additional
computational cost. Our method allows one to design reduced symplectic
integrators in a natural way, despite the noncanonical nature of the symplectic
structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added,
fixed typo
ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells
Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker
Net1 and Myeov: computationally identified mediators of gastric cancer
Gastric adenocarcinoma (GA) is a significant cause of mortality worldwide. The molecular mechanisms of GA remain poorly characterised. Our aim was to characterise the functional activity of the computationally identified genes, NET 1 and MYEOV in GA. Digital Differential Display was used to identify genes altered expression in GA-derived EST libraries. mRNA levels of a subset of genes were quantitated by qPCR in a panel of cell lines and tumour tissue. The effect of pro- and anti-inflammatory stimuli on gene expression was investigated. Cell proliferation and invasion were measured using in an in-vitro GA model following inhibition of expression using siRNA. In all, 23 genes not previously reported in association with GA were identified. Two genes, Net1 and Myeov, were selected for further analysis and increased expression was detected in GA tissue compared to paired normal tissue using quantitative PCR. siRNA-mediated downregulation of Net1 and Myeov resulted in decreased proliferation and invasion of gastric cancer cells in vitro. These functional studies highlight a putative role for NET1 and Myeov in the development and progression of gastric cancer. These genes may provide important targets for intervention in GA, evidenced by their role in promoting invasion and proliferation, key phenotypic hallmarks of cancer cells
An 800-year reconstruction of Elbe River discharge and German Bight sea-surface salinity
On the basis of stable oxygen isotopes (d18O), the summer sea-surface salinity of the German Bight, southeastern North Sea, was determined for the past 800 years. In this near-coastal area, salinity is mainly dependent on the freshwater input of the Elbe River discharging its large catchment, which covers an area of 149 000 km2 of central Europe. Therefore, a proxy for Elbe River discharge was reconstructed at the same time, and consequently the d18O record is also mirroring variations in precipitation within the entire drainage basin. Significant variations in these palaeoenvironmental variables are linked to climatic changes
Retail Investor Behavior, Exchanges, and Financial Market Innovation - Insights from the 4th European Retail Investment Conference (ERIC)
The 4th European Retail Investment Conference was hosted at Boerse Stuttgart, Germany, from May 17th to 19th 2017. The conference chairs invited academics and practitioners to participate and discuss empirical and theoretical research that investigates retail investor products and services, the impact of technology on retail investors, investors" decision-making, investor protection schemes, and market microstructure. The keynote was given by Prof. David L. Yermack, Albert Fingerhut Professor of Finance & Business Transformation at the Stern School of Business (New York University), Chairman of the Finance Department, and Director of the NYU Pollack Center for Law and Business