38,998 research outputs found

    Intercontinental clock synchronization with the block 1 VLBI system

    Get PDF
    The Block 1 very long baseline interferometer (VLBI) operated by the Deep Space Network (DSN) to make weekly measurements of the relative epoch and rate offsets between the time standards in the global network of DSN stations is discussed. The precision of these measurements routinely achieves sub-microsecond levels for epoch offset and accuracies of better than one part in 10 to the 12th power for rate offset. The implementation of the phase calibrator system permits absolute measurement of epoch offset to better than 10 nanoseconds. With the near-real-time play-back and on-line storage of VLBI data, the Block 1 system typically produces clock parameters within 48 hours from the time of observation

    Strengthening Community Colleges' Influence on Economic Mobility

    Get PDF
    Examines the role of community colleges in enhancing upward mobility. Compares family incomes of community college and four-year college students and incomes by degree attained. Recommends ways to help more students obtain degrees in high-earning fields

    Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    Get PDF
    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes

    A formal theory of cubical complexes Formal report, 1 Sep. 1968 - 30 Apr. 1969

    Get PDF
    Algorithm for computation of test failures in cyclic circuit

    Mars: Seasonally variable radar reflectivity

    Get PDF
    The 1971/1973 Mars data set acquired by the Goldstone Solar System Radar was analyzed. It was established that the seasonal variations in radar reflectivity thought to occur in only one locality on the planet (the Solis Lacus radar anomaly) occur, in fact, over the entire subequatorial belt observed by the Goldstone radar. Since liquid water appears to be the most likely cause of the reflectivity excursions, a permanent, year-round presence of subsurface water (frozen or thawed) in the Martian tropics can be inferred

    Development of a relatchable cover mechanism for a cryogenic IR-sensor

    Get PDF
    A cover mechanism for use on the Infrared Background Signature Survey (IBSS) cryostat was developed. The IBSS IR-instrument is scheduled for STS launch in early 1991 as a payload of the Shuttle Payload Satellite (SPS) 2. The cover is hinged, with a motorized rope drive. During ground processing, launch, entry, and landing, the cryostat, which houses the IR-instrument, is required to be a sealed vacuum tight container for cooling purposes and contamination prevention. When on orbit, the cover is opened to provide an unobstructed field of view for the IR-instrument. A positive seal is accomplished through the use of latch mechanism. The cover and the latch are driven by a common redundant actuator consisting of dc motors, spur gears, and a differential gear. Hall probe limit switches and position sensors (rotary variable transformer) are used to determine the position of the cover and the latch. The cover mechanism was successfully qualified for thermal vacuum (-25 to 35 C), acoustic noise, vibration (6 Gs sine, 9.7 G RMS) and life cycles. Constricting requirements, mechanical and electronic control design, specific design details, test results of functional performance, and environmental and life tests are described

    Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    Get PDF
    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring

    Quantum phases of atomic boson-fermion mixtures in optical lattices

    Full text link
    The zero-temperature phase diagram of a binary mixture of bosonic and fermionic atoms in an one-dimensional optical lattice is studied in the framework of the Bose-Fermi-Hubbard model. By exact numerical solution of the associated eigenvalue problems, ground state observables and the response to an external phase twist are evaluated. The stiffnesses under phase variations provide measures for the boson superfluid fraction and the fermionic Drude weight. Several distinct quantum phases are identified as function of the strength of the repulsive boson-boson and the boson-fermion interaction. Besides the bosonic Mott-insulator phase, two other insulating phases are found, where both the bosonic superfluid fraction and the fermionic Drude weight vanish simultaneously. One of these double-insulator phases exhibits a crystalline diagonal long-range order, while the other is characterized by spatial separation of the two species.Comment: 4 pages, 3 figures, using REVTEX

    Regional scale analysis of the altimetric stream network evolution

    No full text
    International audienceFloods result from the limited carrying capacity of stream channels when compared to the discharge peak value. The transit of flood waves - with the associated erosion and sedimentation processes - often modifies local stream geometry. In some cases this results in a reduction of the stream carrying capacity, and consequently in an enhancement of the flooding risk. A mathematical model for the prediction of potential altimetric stream network evolution due to erosion and sedimentation processes is here formalized. It works at the regional scale, identifying the tendency of river segments to sedimentation, stability, or erosion. The model builds on geomorphologic concepts, and derives its parameters from extensive surveys. As a case study, tendencies of rivers pertaining to the Valle d'Aosta region are analyzed. Some validation is provided both at regional and local scales of analysis. Local validation is performed both through a mathematical model able to simulate the temporal evolution of the stream profile, and through comparison of the prediction with ante and post-event river surveys, where available. Overall results are strongly encouraging. Possible use of the information derived from the model in the context of flood and landslide hazard mitigation is briefly discussed
    corecore