The zero-temperature phase diagram of a binary mixture of bosonic and
fermionic atoms in an one-dimensional optical lattice is studied in the
framework of the Bose-Fermi-Hubbard model. By exact numerical solution of the
associated eigenvalue problems, ground state observables and the response to an
external phase twist are evaluated. The stiffnesses under phase variations
provide measures for the boson superfluid fraction and the fermionic Drude
weight. Several distinct quantum phases are identified as function of the
strength of the repulsive boson-boson and the boson-fermion interaction.
Besides the bosonic Mott-insulator phase, two other insulating phases are
found, where both the bosonic superfluid fraction and the fermionic Drude
weight vanish simultaneously. One of these double-insulator phases exhibits a
crystalline diagonal long-range order, while the other is characterized by
spatial separation of the two species.Comment: 4 pages, 3 figures, using REVTEX