168 research outputs found

    Etiology of bronchopulmonary dysplasia

    Get PDF

    Convective instability induced by nonlocality in nonlinear diffusive systems

    Get PDF
    We consider a large class of nonlinear diffusive systems with nonlocal coupling. By using a non-perturbative analytical approach we are able to determine the convective and absolute instabilities of all the uniform states of these systems. We find a huge window of convective instability that should provide a great opportunity to study experimentally and theoretically noise sustained patterns.Comment: 5 pages, accepted for publication in PR

    Difficult diagnosis of atypical kawasaki disease in an infant younger than six months: a case report

    Get PDF
    Background: Kawasaki disease (KD) is an acute inflammatory vasculitis of unknown origin. Case presentation: We report the case of a 5-month-old child with an atypical form of KD, characterized by undulating symptoms, who developed an aneurysm of the right coronary artery and an ectasia of the left anterior descending coronary artery. Conclusion: This case report underlines the difficulties in recognizing incomplete forms of the illness in young infants, who are at higher risk of cardiac complications

    Genetic diversity and its impact on disease severity in respiratory syncytial virus subtype-A and -B bronchiolitis before and after pandemic restrictions in Rome

    Get PDF
    Objectives: To scrutinize whether the high circulation of respiratory syncytial virus (RSV) observed in 2021-2022 and 2022-2023 was due to viral diversity, we characterized RSV-A and -B strains causing bronchiolitis in Rome, before and after the COVID-19 pandemic. Methods: RSV-positive samples, prospectively collected from infants hospitalized for bronchiolitis from 2017-2018 to 2022-2023, were sequenced in the G gene; phylogenetic results and amino acid substitutions were analyzed. Subtype-specific data were compared among seasons. Results: Predominance of RSV-A and -B alternated in the pre-pandemic seasons; RSV-A dominated in 2021-2022 whereas RSV-B was predominant in 2022-2023. RSV-A sequences were ON1 genotype but quite distant from the ancestor; two divergent clades included sequences from pre- and post-pandemic seasons. Nearly all RSV-B were BA10 genotype; a divergent clade included only strains from 2021-2022 and 2022-2023. RSV-A cases had lower need of O2 therapy and of intensive care during 2021-2022 with respect to all other seasons. RSV-B infected infants were more frequently admitted to intensive care units and needed O2 in 2022-2023. Conclusions: The intense RSV peak in 2021-2022, driven by RSV-A phylogenetically related to pre-pandemic strains is attributable to the immune debt created by pandemic restrictions. The RSV-B genetic divergence observed in post-pandemic strains may have increased the RSV-B specific immune debt, being a possible contributor to bronchiolitis severity in 2022-2023

    Steady state of atoms in a resonant field with elliptical polarization

    Full text link
    We present a complete set of analytical and invariant expressions for the steady-state density matrix of atoms in a resonant radiation field with arbitrary intensity and polarization. The field drives the closed dipole transition with arbitrary values of the angular momenta JgJ_{g} and JeJ_{e} of the ground and excited state. The steady-state density matrix is expressed in terms of spherical harmonics of a complex direction given by the field polarization vector. The generalization to the case of broad-band radiation is given. We indicate various applications of these results.Comment: revtex, 26 pages, including 3 eps figures; PRA accepted for publication;v2 three typos are fixe

    Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI).

    Get PDF
    Abstract Background Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. Methods/Design Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests. Discussion This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns. Trial registration Current Controlled Trials ISRCTN62175998; ClinicalTrials.gov Identifier NCT01241019; EudraCT Number 2010-018627-25</p

    Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis

    Get PDF
    BACKGROUND: An altered susceptibility of lung fibroblasts to Fas-induced apoptosis has been implicated in the pathogenesis of pulmonary fibrosis; however, the underlying mechanism is not completely understood. Here, we studied the susceptibility of lung fibroblasts, obtained from patients with (f-fibs) and without pulmonary fibrosis (n-fibs), to FasL- (CD95L/APO-1) induced apoptosis in relation to the expression and the amounts of membrane-bound and soluble Fas. We also analysed the effects of tumor necrosis factor-β on FasL-induced cell death. METHODS: Apoptosis was induced with recombinant human FasL, with and without prior stimulation of the fibroblasts with tumor necrosis factor-α and measured by a histone fragmentation assay and flow cytometry. The expression of Fas mRNA was determined by quantitative PCR. The expression of cell surface Fas was determined by flow cytometry, and that of soluble Fas (sFas) was determined by enzyme-linked immunosorbent assay. RESULTS: When compared to n-fibs, f-fibs were resistant to FasL-induced apoptosis, despite significantly higher levels of Fas mRNA. F-fibs showed lower expression of surface-bound Fas but higher levels of sFas. While TNF-α increased the susceptibility to FasL-induced apoptosis in n-fibs, it had no pro-apoptotic effect in f-fibs. CONCLUSIONS: The data suggest that lower expression of surface Fas, but higher levels of apoptosis-inhibiting sFas, contribute to the resistance of fibroblasts in lung fibrosis against apoptosis, to increased cellularity and also to increased formation and deposition of extracellular matrix

    Scaling laws in velocity-selective coherent-population-trapping laser cooling

    Get PDF
    One-dimensional laser cooling based on velocity-selective coherent population trapping (VSCPT) has been investigated numerically through the solution of the optical Bloch equations and through a Monte Carlo analysis. The 1→1 and 2→2 transitions have been examined as a function of the atomic recoil frequency, the spontaneous-emission decay rate, and the Rabi frequency of the cooling laser. It has been found that for a large set of those parameters, the VSCPT cooling process may be described through scaling-law relations. The scaling laws are not valid at long atom-laser interaction times or large Rabi frequencies, where the atomic Doppler shift plays a significant role in the atomic motion evolution. Similar results for two atomic transitions suggest the validity of the scaling law for any one-dimensional VSCPT process
    corecore