15,135 research outputs found

    How heavy can the Fermions in Split Susy be? A study on Gravitino and Extradimensional LSP

    Full text link
    In recently introduced Split Susy theories, in which the scale of Susy breaking is very high, the requirement that the relic abundance of the Lightest SuperPartner (LSP) provides the Dark Matter of the Universe leads to the prediction of fermionic superpartners around the weak scale. This is no longer obviously the case if the LSP is a hidden sector field, such as a Gravitino or an other hidden sector fermion, so, it is interesting to study this scenario. We consider the case in which the Next-Lightest SuperPartner (NLSP) freezes out with its thermal relic abundance, and then it decays to the LSP. We use the constraints from BBN and CMB, together with the requirement of attaining Gauge Coupling Unification and that the LSP abundance provides the Dark Matter of the Universe, to infer the allowed superpartner spectrum. As very good news for a possible detaction of Split Susy at LHC, we find that if the Gravitino is the LSP, than the only allowed NLSP has to be very purely photino like. In this case, a photino from 700 GeV to 5 TeV is allowed, which is difficult to test at LHC. We also study the case where the LSP is given by a light fermion in the hidden sector which is naturally present in Susy breaking in Extra Dimensions. We find that, in this case, a generic NLSP is allowed to be in the range 1-20 TeV, while a Bino NLSP can be as light as tens of GeV.Comment: 29 pages, 12 figures. v2: modified conclusions for bino NLSP. v3: corrected small mistake in Gauge Coupling Unification, conclusions unchange

    Conservation Laws and the Multiplicity Evolution of Spectra at the Relativistic Heavy Ion Collider

    Full text link
    Transverse momentum distributions in ultra-relativistic heavy ion collisions carry considerable information about the dynamics of the hot system produced. Direct comparison with the same spectra from p+pp+p collisions has proven invaluable to identify novel features associated with the larger system, in particular, the "jet quenching" at high momentum and apparently much stronger collective flow dominating the spectral shape at low momentum. We point out possible hazards of ignoring conservation laws in the comparison of high- and low-multiplicity final states. We argue that the effects of energy and momentum conservation actually dominate many of the observed systematics, and that p+pp+p collisions may be much more similar to heavy ion collisions than generally thought.Comment: 15 pages, 14 figures, submitted to PRC; Figures 2,4,5,6,12 updated, Tables 1 and 3 added, typo in Tab.V fixed, appendix B partially rephrased, minor typo in Eq.B1 fixed, minor wording; references adde

    Particle-Antiparticle Asymmetry Due to Non-Renormalizable Effective Interactions

    Get PDF
    We consider a model for generating a particle-antiparticle asymmetry through out-of-equilibrium decays of a massive particle due to non-renormalizable, effective interactions.Comment: preliminary version, 38 pages; LaTeX source, epsf.sty and EPS files included in tar archiv

    Comparison of Models of Critical Opacity in the Quark-Gluon Plasma

    Full text link
    In this work we discuss two methods of calculation of quark propagation in the quark-gluon plasma. Both methods make use of the Nambu-Jona-Lasinio model. The essential difference of these calculations is the treatment of deconfinement. A model of confinement is not included in the work of Gastineau, Blanquier and Aichelin [hep-ph/0404207], however, the meson states they consider are still bound for temperatures greater than the deconfinement temperature T_c. On the other hand, our model deals with unconfined quarks and includes a description of the q(bar)q resonances found in lattice QCD studies that make use of the maximum entropy method (MEM). We compare the q{bar)q cross sections calculated in these models.Comment: 7 pages and 4 figures RevTe

    Axion constraints in non-standard thermal histories

    Get PDF
    It is usually assumed that dark matter is produced during the radiation dominated era. There is, however, no direct evidence for radiation domination prior to big-bang nucleosynthesis. Two non-standard thermal histories are considered. In one, the low-temperature-reheating scenario, radiation domination begins as late as 1 MeV, and is preceded by significant entropy generation. Thermal axion relic abundances are then suppressed, and cosmological limits to axions are loosened. For reheating temperatures less than 35 MeV, the large-scale structure limit to the axion mass is lifted. The remaining constraint from the total density of matter is significantly relaxed. Constraints are also relaxed for higher reheating temperatures. In a kination scenario, a more modest change to cosmological axion constraints is obtained. Future possible constraints to axions and low-temperature reheating from the helium abundance and next-generation large-scale-structure surveys are discussed.Comment: 10 pages, 7 figures, revised to match version published in Phys. Rev. D. Fig. 7 and Eq. (20) modifie

    Gamma rays from ultracompact primordial dark matter minihalos

    Full text link
    Ultracompact minihalos have recently been proposed as a new class of dark matter structure. These minihalos would be produced by phase transitions in the early Universe or features in the inflaton potential, and constitute non-baryonic massive compact halo objects (MACHOs) today. We examine the prospect of detecting ultracompact minihalos in gamma-rays if dark matter consists of self-annihilating particles. We compute present-day fluxes from minihalos produced in the electron-positron annihilation epoch, and the QCD and electroweak phase transitions in the early Universe. Even at a distance of 100 pc, minihalos produced during the electron-positron annihilation epoch should be eminently detectable today, either by the Fermi satellite, current Air Cherenkov telescopes, or even in archival EGRET data. Within ~1 pc, minihalos formed in the QCD phase transition would have similar predicted fluxes to the dwarf spheroidal galaxies targeted by current indirect dark matter searches, so might also be detectable by present or upcoming experiments.Comment: 5 pages, 3 figures. Minor update to match published version of erratu

    Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics

    Full text link
    We show that the addition of real scalars (gauge singlets) to the Standard Model can both ameliorate the little hierarchy problem and provide realistic Dark Matter candidates. To this end, the coupling of the new scalars to the standard Higgs boson must be relatively strong and their mass should be in the 1-3 TeV range, while the lowest cutoff of the (unspecified) UV completion must be >~ 5 TeV, depending on the Higgs boson mass and the number of singlets present. The existence of the singlets also leads to realistic and surprisingly reach neutrino physics. The resulting light neutrino mass spectrum and mixing angles are consistent with the constraints from the neutrino oscillations.Comment: discussion of multi singlet case adde

    Heavy quarks and the collective properties of hot QCD

    Full text link
    After reviewing the evidence that QCD matter at ultrarelativistic energies behaves as a very good fluid, we describe the connection of QCD fluidity to heavy quark observables. We review the way in which heavy quark spectra can place tighter limits on the viscosity of QCD matter. Finally, we show that correlations between flow observables and the event-by-event charm quark abundance ("flavoring") can shed light on the system's equation of state.Comment: Talk given at BEACH2010 conference, Perugia, Italy Published in Nuclear Physics B (proceedings supplement), NUPHBP1364
    • …
    corecore