16 research outputs found

    A Functional Role for Modality-Specific Perceptual Systems in Conceptual Representations

    Get PDF
    Theories of embodied cognition suggest that conceptual processing relies on the same neural resources that are utilized for perception and action. Evidence for these perceptual simulations comes from neuroimaging and behavioural research, such as demonstrations of somatotopic motor cortex activations following the presentation of action-related words, or facilitation of grasp responses following presentation of object names. However, the interpretation of such effects has been called into question by suggestions that neural activation in modality-specific sensorimotor regions may be epiphenomenal, and merely the result of spreading activations from “disembodied”, abstracted, symbolic representations. Here, we present two studies that focus on the perceptual modalities of touch and proprioception. We show that in a timed object-comparison task, concurrent tactile or proprioceptive stimulation to the hands facilitates conceptual processing relative to control stimulation. This facilitation occurs only for small, manipulable objects, where tactile and proprioceptive information form part of the multimodal perceptual experience of interacting with such objects, but facilitation is not observed for large, nonmanipulable objects where such perceptual information is uninformative. Importantly, these facilitation effects are independent of motor and action planning, and indicate that modality-specific perceptual information plays a functionally constitutive role in our mental representations of objects, which supports embodied assumptions that concepts are grounded in the same neural systems that govern perception and action

    Estimating working memory capacity for lists of nonverbal sounds

    Get PDF
    Working memory (WM) capacity limit has been extensively studied in the domains of visual and verbal stimuli. Previous studies have suggested a fixed WM capacity of typically about 3 or 4 items, based on the number of items in working memory reaching a plateau after several items as the set size increases. However, the fixed WM capacity estimate appears to rely on categorical information in the stimulus set (Olsson & Poom, 2005). We designed a series of experiments to investigate nonverbal auditory WM capacity and its dependence on categorical information. Experiments 1 and 2 used simple tones and revealed capacity limit of up to 2 tones following a 6-s retention interval. Importantly, performance was significantly higher at set sizes 2, 3, and 4 when the frequency difference between target and test tones was relatively large. In Experiment 3, we added categorical information to the simple tones, and the effect of tone change magnitude decreased. Maximal capacity for each individual was just over 3 sounds, in the range of typical visual procedures. We propose that two types of information, categorical and detailed acoustic information, are kept in WM, and that categorical information is critical for high WM performance

    Electromagnetic recording of the auditory system

    No full text
    Auditory processing is remarkably fast and sensitive to the precise temporal structure of acoustic signals over a range of scales, from submillisecond phenomena such as localization to the construction of elementary auditory attributes at tens of milliseconds to basic properties of speech and music at hundreds of milliseconds. In light of the rapid (and often transitory) nature of auditory phenomena, in order to investigate the neurocomputational basis of auditory perception and cognition, a technique with high temporal resolution is appropriate. Here we briefly outline the utility of magnetoencephalography (MEG) for the study of the neural basis of audition. The basics of MEG are outlined in brief, and some of the most-used neural responses are described. We discuss the classic transient evoked fields (e.g., M100), responses elicited by change in a stimulus (e.g., pitch-onset response), the auditory steady-state response, and neural oscillations (e.g., theta-phase tracking). Because of the high temporal resolution and the good spatial resolution of MEG, paired with the convenient location of human auditory cortex for MEG-based recording, electromagnetic recording of this type is well suited to investigate various aspects from audition, from crafted laboratory experiments on pitch perception or scene analysis to naturalistic speech and music tasks

    A critical period for right hemisphere recruitment in American Sign Language processing.

    No full text
    Signed languages such as American Sign Language (ASL) are natural languages that are formally similar to spoken languages, and thus present an opportunity to examine the effects of language structure and modality on the neural organization for language. Native learners of spoken languages show predominantly left-lateralized patterns of neural activation for language processing, whereas native learners of ASL show extensive right hemisphere (RH) and LH activation. We demonstrate that the RH angular gyrus is active during ASL processing only in native signers (hearing, ASL-English bilinguals) but not in those who acquired ASL after puberty (hearing, native English speakers). This is the first demonstration of a 'sensitive' or 'critical' period for language in an RH structure. This has implications for language acquisition and for understanding age-related changes in neuroplasticity more generally
    corecore