1,233 research outputs found

    Detecting and Resolving ‘Dirty’ Data: Ten Steps to Better Business Insights

    Get PDF
    Although business’s increasing utilization of technology to drive operational decisions has meant a greater reliance on data, it is exceedingly rare that an entity possesses a perfectly clean set of data. Some of it is inevitably invalid, incomplete, or inaccurate—in other words, “dirty.” In order to address the issues caused by dirty data, the authors provide a 10-step program CPAs in any setting can use to help businesses make better decisions

    The Role of Bargaining Style in Public Company Audits

    Get PDF
    According to prior auditing research, negotiation plans an important role in audit outcomes. General purpose negotiating literature suggests that bargaining styles are an important factor in business negotiations and that bargaining style mismatches between negotiating counter-parties can influence negotiation results. To date, the role of auditors\u27 bargaining-style tendencies in audit negotiations has gone unnoticed in the auditing literature. A study examines the bargaining styles of accountants and managers as measured by the Thomas-Kilmann Conflict Mode Instrument. The results suggest that accountants are predisposed to avoid conflict or accommodate whereas managers are predisposed to collaborate or compete. Recognizing this potential mismatch of bargaining styles should help the auditor to develop more effective negotiation strategies

    High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection

    No full text
    A microflow cytometer has been fabricated that detects and counts fluorescent particles flowing through a microchannel at a high speed based upon their fluorescence emission intensity. Dielectrophoresis is used to continuously focus particles within the flowing fluid stream into the centre of the device, which is 40 μm high and 250 μm wide. The method ensures that all the particles pass through an interrogation region approximately 5 μm in diameter, which is created by focusing a beam of light into a spot. The functioning of the device was demonstrated by detecting and counting fluorescent latex particles at a rate of up to 250 particles/s. A mixture of three different populations of latex particle was used, each sub-population with a distinct level of fluorescent intensity. The device was evaluated by comparison with a conventional fluorescent activated cell sorter (FACS) and numerical simulation demonstrated that for 6 mico m beads, and for this design of chip the theoretical throughput is of the order of 1000 particles/s (corresponding to a particle velocty of 1 mm/s)

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), abab-plane (ρab\rho_{ab}) and cc-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the bb-axis for Pb(0.4)Pb(0.4)-doped Bi(Pb)Bi(Pb)-2212 is dominantly of PbPb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower cc-axis resistivity and a resistivity minimum at 8013080-130K. He-annealed samples exhibit a much higher cc-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B

    Robust skill of decadal climate predictions

    Get PDF
    There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations, improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.D.M.S., A.A.S., N.J.D., L.H. and R.E. were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra and by the European Commission Horizon 2020 EUCP project (GA 776613). L.P.C. was supported by the Spanish MINECO HIATUS (CGL2015-70353-R) project. F.J.D.R. was supported by the H2020 EUCP (GA 776613) and the Spanish MINECO CLINSA (CGL2017-85791-R) projects. W.A. M. and H.P. were supported by the German Ministry of Education and Research (BMBF) under the project MiKlip (grant 01LP1519A). The NCAR contribution was supported by the US National Oceanic and Atmospheric Administration (NOAA) Climate Program Office under Climate Variability and Predictability Program Grant NA13OAR4310138 and by the US National Science Foundation (NSF) Collaborative Research EaSM2 Grant OCE-1243015. The NCAR contribution is also based upon work supported by NCAR, which is a major facility sponsored by the US NSF under Cooperative Agreement No. 1852977. The Community Earth System Model Decadal Prediction Large Ensemble (CESM-DPLE) was generated using computational resources provided by the US National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231, as well as by an Accelerated Scientific Discovery grant for Cheyenne (https://doi.org/10.5065/D6RX99HX) that was awarded by NCAR’s Computational and Information System Laboratory.Peer ReviewedPostprint (published version

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
    corecore