128 research outputs found

    New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides

    Full text link
    A new DTA (Differential Thermal Analysis) device was designed and installed in a Hot Isostatic Pressure (HIP) furnace in order to perform high-pressure thermodynamic investigations up to 2 kbar and 1200C. Thermal analysis can be carried out in inert or oxidising atmosphere up to p(O2) = 400 bar. The calibration of the DTA apparatus under pressure was successfully performed using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard calibration references. The thermal properties of these metals have been studied under pressure. The values of DV (volume variation between liquid and solid at Tm), ROsm (density of the solid at Tm) and ALPHAm (linear thermal expansion coefficient at Tm) have been extracted. A very good agreement was found with the existing literature and new data were added. This HP-DTA apparatus is very useful for studying the thermodynamics of those systems where one or more volatile elements are present, such as high TC superconducting oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading to the formation of the 2223 phase was found to occur at higher temperatures when applying pressure: the reaction DTA peak shifted by 49C at 2 kbar compared to the reaction at 1 bar. This temperature shift is due to the higher stability of the Pb-rich precursor phases under pressure, as the high isostatic pressure prevents Pb from evaporating.Comment: 6 figures, 3 tables, Thermodynamics, Thermal property, Bi-2223, fundamental valu

    Device for simultaneous measurement of the Peltier and Seebeck coefficients verification of the Kelvin relation

    Get PDF
    We have designed and built an experimental device, which we called a "thermoelectric bridge." Its primary purpose is simultaneous measurement of the relative Peltier and Seebeck coefficients. The systematic errors for both coefficients are equal with this device and manipulation is not necessary between the measurement of one coefficient and the other. Thus, this device is especially suitable for verifying their linear relation postulated by Lord Kelvin. Also, simultaneous measurement of thermal conductivity is described in the text. A sample is made up of the couple nickel¿platinum, taking measurements in the range of ¿20¿60°C and establishing the dependence of each coefficient with temperature, with nearly equal random errors ±0.2%, and systematic errors estimated at ¿0.5%. The aforementioned Kelvin relation is verified in this range from these results, proving that the behavioral deviations are ¿0.3% contained in the uncertainty ±0.5% caused by the propagation of error
    corecore