10,074 research outputs found
Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces
We numerically investigate bouncing and non-bouncing of droplets during
isothermal impact on superhydrophobic surfaces. An in-house,
experimentally-validated, finite-element method based computational model is
employed to simulate the droplet impact dynamics and transient fluid flow
within the droplet. The liquid-gas interface is tracked accurately in
Lagrangian framework with dynamic wetting boundary condition at three-phase
contact line. The interplay of kinetic, surface and gravitational energies is
investigated via systematic variation of impact velocity and equilibrium
contact angle. The numerical simulations demonstrate that the droplet bounces
off the surface if the total droplet energy at the instance of maximum
recoiling exceeds the initial surface and gravitational energy, otherwise not.
The non-bouncing droplet is characterized by the oscillations on the free
surface due to competition between the kinetic and surface energy. The droplet
dimensions and shapes obtained at different times by the simulations are
compared with the respective measurements available in the literature.
Comparisons show good agreement of numerical data with measurements and the
computational model is able to reconstruct the bouncing and non-bouncing of the
droplet as seen in the measurements. The simulated internal flow helps to
understand the impact dynamics as well as the interplay of the associated
energies during the bouncing and non-bouncing.Comment: Theoretical and Computational Fluid Dynamics, 201
Did Prepayments Sustain the Subprime Market?
This paper demonstrates that the reason for widespread default of mortgages in the subprime market was a sudden reversal in the house price appreciation of the early 2000's. Using loan-level data on subprime mortgages, we observe that the majority of subprime loans were hybrid adjustable rate mortgages, designed to impose substantial financial burden on reset to the fully indexed rate. In a regime of rising house prices, a financially distressed borrower could avoid default by prepaying the loan and our results indicate that subprime mortgages originated between 1998 and 2005 had extremely high prepayment rates. Most important, prepayment rates on subprime mortgages were extremely high (i) not just for ARMs but FRMs as well, (ii) even before the reset dates on hybrid-ARMs and (iii) despite prepayment penalties on the contract. However, a sudden reversal in house price appreciation increased default in this market because it made this prepayment exit option cost-prohibitive. In short, prepayments sustained the subprime boom and the extremely high default rates on 2006-2007 vintages were largely due to the inability of these mortgages to prepay (an option that was available for mortgages of earlier vintages).mortgages;subprime;refinance;prepayment;crisis
X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05
We present the results of the two most recent (2005) XMM-Newton observations
of Saturn together with the re-analysis of an earlier (2002) observation from
the XMM-Newton archive and of three Chandra observations in 2003 and 2004.
While the XMM-Newton telescope resolution does not enable us to resolve
spatially the contributions of the planet's disk and rings to the X-ray flux,
we can estimate their strengths and their evolution over the years from
spectral analysis, and compare them with those observed with Chandra. The
spectrum of the X-ray emission is well fitted by an optically thin coronal
model with an average temperature of 0.5 keV. The addition of a fluorescent
oxygen emission line at ~0.53 keV improves the fits significantly. In
accordance with earlier reports, we interpret the coronal component as emission
from the planetary disk, produced by the scattering of solar X-rays in Saturn's
upper atmosphere, and the line as originating from the Saturnian rings. The
strength of the disk X-ray emission is seen to decrease over the period 2002 -
2005, following the decay of solar activity towards the current minimum in the
solar cycle. By comparing the relative fluxes of the disk X-ray emission and
the oxygen line, we suggest that the line strength does not vary over the years
in the same fashion as the disk flux. We consider possible alternatives for the
origin of the line. The connection between solar activity and the strength of
Saturn's disk X-ray emission is investigated and compared with that of Jupiter.
We also discuss the apparent lack of X-ray aurorae on Saturn and conclude that
they are likely to lie below the sensitivity threshold of current Earth-bound
observatories. A similar comparison for Uranus and Neptune leads to the same
disappointing conclusion.Comment: 10 pages, 5 figures; to be published in 'Astronomy and Astrophysics
Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions
Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one
full Saturn rotation (10.7 hr) at each epoch. We report here the first
observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk,
which is seen in direct response to an M6-class flare emanating from a sunspot
that was clearly visible from both Saturn and Earth. Saturn's disk X-ray
emissions are found to be variable on time scales of hours to weeks to months,
and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's
polar (auroral) region have characteristics similar to those from its disk.
This report, combined with earlier studies, establishes that disk X-ray
emissions of the giant planets Saturn and Jupiter are directly regulated by
processes happening on the Sun. We suggest that these emissions could be
monitored to study X-ray flaring from solar active regions when they are on the
far side and not visible to Near-Earth space weather satellites.Comment: Total 12 pages including 4 figure
DataHub: Collaborative Data Science & Dataset Version Management at Scale
Relational databases have limited support for data collaboration, where teams
collaboratively curate and analyze large datasets. Inspired by software version
control systems like git, we propose (a) a dataset version control system,
giving users the ability to create, branch, merge, difference and search large,
divergent collections of datasets, and (b) a platform, DataHub, that gives
users the ability to perform collaborative data analysis building on this
version control system. We outline the challenges in providing dataset version
control at scale.Comment: 7 page
Numerical Simulation of Plane Crack Problems Using Extended Isogeometric Analysis
AbstractThis paper presents the simulation of plane crack problems using extended isogeometric analysis (XIGA). In XIGA, both geometry and solution are approximated using NURBS basis functions. Discontinuous Heaviside function is used to model the crack face, while crack tip singularity is modeled using asymptotic crack tip enrichment functions. Few plane crack problems are solved in the presence of multiple holes and inclusions using XIGA. These simulations show that the SIFs obtained using XIGA gives more accurate results as compared to those obtained by XFEM
Carrier Transport in Magnesium Diboride: Role of Nano-inclusions
Anisotropic-gap and two-band effects smear out the superconducting transition
(Tc) in literature reported thermal conductivity of MgB2, where large
electronic contributions also suppress anomaly-manifestation in their
negligible phononic-parts. Present thermal transport results on scarcely
explored specimens featuring nano-inclusions exhibit a small but clear
Tc-signature, traced to relatively appreciable phononic conduction, and its
dominant electronic-scattering. The self-formed MgO as extended defects
strongly scatter the charge carriers and minutely the phonons with their
longer-mean-free-path near Tc. Conversely, near room temperature, the
shorter-dominant-wavelength phonon's transport is hugely affected by these
nanoparticles, undergoing ballistic to diffusive crossover and eventually
entering the Ioffe-Regel mobility threshold regime.Comment: 14 pages, 4 figures, 28 reference
Latest results on Jovian disk X-rays from XMM-Newton
We present the results of a spectral study of the soft X-ray emission
(0.2-2.5 keV) from low-latitude (`disk') regions of Jupiter. The data were
obtained during two observing campaigns with XMM-Newton in April and November
2003. While the level of the emission remained approximately the same between
April and the first half of the November observation, the second part of the
latter shows an enhancement by about 40% in the 0.2-2.5 keV flux. A very
similar, and apparently correlated increase, in time and scale, was observed in
the solar X-ray and EUV flux.
The months of October and November 2003 saw a period of particularly intense
solar activity, which appears reflected in the behaviour of the soft X-rays
from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras,
are all well fitted by a coronal model with temperatures in the range 0.4-0.5
keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86
keV): these are characteristic lines of solar X-ray spectra at maximum activity
and during flares.
The XMM-Newton observations lend further support to the theory that Jupiter's
disk X-ray emission is controlled by the Sun, and may be produced in large part
by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere
of the planet.Comment: 17 pages, 7 figures, accepted for publication in a special issue of
Planetary and Space Scienc
- …