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Abstract

This paper presents the simulation of plane crack problems using extended isogeometric analysis (XIGA). In XIGA, both
geometry and solution are approximated using NURBS basis functions. Discontinuous Heaviside function is used to model the
crack face, while crack tip singularity is modeled using asymptotic crack tip enrichment functions. Few plane crack problems
are solved in the presence of multiple holes and inclusions using XIGA. These simulations show that the SIFs obtained using
XIGA gives more accurate results as compared to those obtained by XFEM.
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1. Introduction

Now a day, the most of the engineering problems are solved using FEM. It suffers from the disadvantage of

knot vector
p order of polynomial
n Number of basis function
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R NURBS basis function
N B-spline basis function

conformal meshing for solving fracture problems. In past, the fracture analysis of structures is presented by the
combination of isogeometric analysis (IGA) and XFEM. In IGA [1], non-uniform rational B-splines (NURBS)
basis functions are used for the representation of the geometries as well as the solution. So far, the IGA have been
successfully implemented in various fields such as gradient damage modeling [2], cohesive zone modeling [3] and
topology optimization [4] and many more. The implementation of NURBS based IGA for contact problems [5]
gives greater accuracy and faster convergence rate as compared to the Lagrange finite elements. Nearly same
accuracy is achieved using NURBS based IGA with fewer degrees of freedom in fracture mechanics problems [6-
7]. The different problems of stationary as well as propagating crack [8] are solved using extended isogeometric
analysis (XIGA). The bi-material body with a curved interface [9] is analyzed by combination of quadratic NURBS
basis function and XFEM.

In the present work, XIGA is used for the simulation of planer crack problems. A plane edge crack problem is
solved using first, second and third order NURBS basis functions. Two edge crack problems are solved in the
presence of multiple holes and inclusions. The values of stress intensity factors (SIFs) are computed using domain
based interaction integral approach.

2. Isogeometric Analysis

2.1. Basis Function

The knot vector, B-spline functions and NURBS functions are discussed in this section. B-splines are built from
piecewise polynomial functions. The details of NURBS can be found in Ref. [10]. The knot vector is defined by
a set of coordinates, or knots, which gives information where the subintervals are connected.

1 2 1, ,......... n pξ ξ ξ are the real coordinates represent the geometry in parametric space [0,1], where iξ is the
thi knot, i is the knot index, i = 1, 2... 1n p , p is polynomial order and n is number of basis function used to

construct the B-spline curve.
In the isogeometric analysis, different types of knot vectors are used: open knot vector and closed knot vector.

In the present analysis, open knot vector is used, where end knots are repeated 1p times. B-spline basis are
defined recursively starting with 0p in the following manner [10].
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The derivatives of B-spline basis function can be calculated for a given order of polynomial and knot vector:
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A rational B-spline curve defined by 1n control points iB is given by [10]:
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where, , ( )i pR ξ are the NURBS basis function, iB are the coordinates of control point ,i iX Y , iw are the weights

associated with the control points, and , ( )i pN ξ are the B-spline basis function of order p defined using knot vector.
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The length of the knot vector is given as [11]. 1m n p (4)

The derivative of NURBS basis function can be computed as
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NURBS has the following features

NURBS basis function forms a partition of unity ,
1

( ) 1
n

i p
i

R ξ .

The support of each , ( )i pR ξ is compact and contained in interval [ 1,i i pξ ξ ].

NURBS insure 1p continuous derivatives if internal knots are not repeated, whereas it produces
p kC continuity if knot has multiplicity k .

2.2. Isogeometric Discretization:

A given domain is partitioned into displacement u , traction t and traction free boundaries c . The

equilibrium equation and boundary conditions are defined as [12]

.σ b 0 in ˆ, . , . 0 on ctn t on nσ σ (6)

where, σ is Cauchy stress tensor and b is body force per unit volume.
The constitutive relation for the elastic material under consideration is given by Hook’s law:

Dεσ (7)

A weak form of the equilibrium equation [13] is given as:

( ) : ( ) . .
tΓ

d d dΓσ u ε v b v t v (8)

On substituting the trial and test functions and using the arbitrariness of nodal variations, the following discrete
system of equations are obtained

K d f (9)

where, K is the global stiffness matrix, d is the vector of nodal unknowns and f is the external force vector.
B matrix of basis function derivatives is given by [8]:
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where, ( )R ξ is a vector of NURBS basis functions, iR ( 1,2,......... eni n ) in the parametric space of

1, 2( )ξ ξ ξ . ( 1) ( 1)enn p q are the number of non-zero basis function for a given knot span i.e. element,

where, p and q are the order of curve in 1ξ and 2ξ directions respectively. The physical coordinates

1 2( , )X X X and displacement approximation hu can be derived for a particular point 1 2( , )ξ ξ ξ i.e. parametric

coordinate.

1 1

( ) ( ) , ( ) ( )
en enn n

h
i i i i

i i

u R u X R Bξ ξ ξ ξ (11)

3. Extended Isogeometric Analysis

In extended isogeometric analysis, the displacement approximation is locally enriched to simulate
discontinuities. Few degrees of freedom are added to the selected control points near the location of a crack.

3.1. XIGA approximations for cracks

In XIGA, for modeling crack edge and tip, Equation (11) can be written in generalized form as

4
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where ( )H ξ and αβ are the Heaviside function and crack tip enrichment functions respectively. The additional

degrees of freedom related to the modeling of crack face and crack tip are represented by vectors ja and

kbα respectively. The cfn is the number of enn basis function that have crack face in their support domain and ctn is

the number of basis function associated with crack tip in the domain of influence. Heaviside function ( )H ξ is +1

(if physical coordinates corresponding to parametric coordinatesξ ) is above crack and -1 on the other side of

discontinuity. The crack tip enrichment functions are defined as [12]:

( ) [ cos , sin , cos sin , sin sin ]
2 2 2 2

r r r rα
θ θ θ θβ ξ θ θ

where, r and θ are the local crack tip parameters.

3.2. XIGA approximations for hole

The XIGA approximation for holes can be written as:

1 1

( ) ( ) ( ) ( )
fen ncn

h
i i j j

i j

u R u R cξ ξ ξ χ ξ (13)

where, jc is the nodal enriched degree of freedom associated with Heaviside function ( )χ ξ which takes a value

+1 for the nodes lying outside and 0 for inside the hole.
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3.3. XIGA approximation for Inclusion

The XIGA approximation for inclusions can be written as

1 1

( ) ( ) ( ) ( )
en enn n

h
i i j j

i j

u R u R dξ ξ ξ ψ ξ (14)

where, ( )ψ ξ and jd are corresponds to the level set function and degree of freedom associated with level set

function.

3.4. XIGA formulation for a crack

The first term in the right hand side of “Eq. (12)” evaluates the displacement field by using classical IGA
approximation, while the remaining terms are enrichment approximation to model discontinuity and to represent
solution accurately near the crack tip. The elemental matrices K and f in “Eq. (9)”, are obtained using the
approximation function defined in “Eq. (11)”.
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The discretized form of governing equation:

( ) , , , , , ,
e

T
rs r s
ij i j hd where r s u a b c dK C (16)

1 2 3 4 Th u a b b b b c d
i i i i i i i if f f f f f f f f (17)

, ,
e e e

t t t

u T T a T T bα T T
i i i i i i i i iR d R d R H d R H d R d R dα αβ βf b t f b t f b t

, ( ) ( )
e e

t t

c T T d T T
i i i i i iR H d R H d R d R dψ ξ ψ ξf b t f b t (18)

where, T
iR are represents the NURBS basis function. u
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i , b

i , b
i
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i and d
i are the NURBS basis

function derivatives matrices given by:
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3.5. Computation of Stress Intensity Factor

In the present work, the individual stress intensity factors IK and IIK are obtained using domain form of

interaction integral [15].

4. Numerical Simulation and Discussion

In the present work, edge crack problems are simulated using XIGA in the presence of inclusions and holes. In
order to check the accuracy and performance of XIGA, the results are compared with XFEM. The order of
NURBS function in both parametric directions is taken as 3, and the weight of each control point is taken as unity.
First order NURBS with uniform weight is equivalent to the Lagrange finite elements. Uniformly distributed
control points are taken for the analysis. The values of SIFs are calculated by interaction integral approach. The
material properties [15] used for the simulations are:

Elastic Modulus 74E GPa

Elastic Modulus for Inclusions 20IE GPa

Poisson Ratio for Material 0.3ν
Poisson Ratio for Inclusions 0.3ν

Fracture Toughness
3

21897.36 /ICK N mm

The theoretical stress intensity factor can be computed as

2 3 4

, 1.12 0.23 10.6 21.7 30.4I

a a a a
K C a C

L L L L
σ π (19)

4.1. Plate with an edge crack

A plate of size 100mm 200mm along with a crack length 30 mma is shown in Fig. 1 (a) along with

boundary conditions. The control points are taken to be 30 60 for the purpose of simulation. The knot vectors

are taken open and uniform without any repetition. The bottom edge of the plate is constrained in the y direction.

The plate is subjected to tensile load of 60 /N mmσ at the top edge. The stress contour plots of xxσ and yyσ are

shown in the Fig. 1 (b) and Fig. 2 (a).  Table 1 presents the error in mode-I SIF for different control points, and
order with the exact solution.

It is observed that as the number of control points and NURBS order are increased, the error obtained is found
less as compared to the exact solution. Fig. 2 (b) represents the SIF variation with the crack length. The SIF
computed using XIGA gives less error as compared to XFEM.
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Fig. 1. (a) Edge crack plate along with direction; (b) Stress contour plot ( xxσ ) for an edge crack plate.

Fig. 2. (a) Stress contour plot ( yyσ ) for an edge crack plate; (b) SIF variation with crack length for left edge crack.

D
a

σ

L
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4.2. Plate with an edge crack and multiple holes

A plate of size 100mm 200mm along with a crack length of 30 mma , and 16 holes of radii 5 mm are taken
for this simulation.  The uniformly distributed control points are taken as 60 120 . The geometry and boundary
conditions are taken similar to the problem 4.1. The xxσ , yyσ and xyσ represents the stress contour plots as shown
in Fig. 3 (a), Fig. 3 (b) and Fig. 4 (a) respectively. The values of SIF computed using XIGA are compared with
XFEM as shown in Fig. 4 (b).

Fig. 3. (a) Contour plot of xxσ for an edge crack with multiple holes; (b)  Contour plot of yyσ for an edge crack with multiple holes.

Fig. 4. (a) Contour plot of xyσ for an edge crack with multiple holes; (b) SIF variation with crack length for an edge crack with multiple holes.
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4.3. Plate with an edge crack and multiple inclusions

A plate of size 100mm×200mm along with a crack of length 30 mma , and 14 inclusions of radii 5 mm are
taken for the simulation. The control points are taken as 50 100 . The geometry and boundary conditions are
taken as per problem 4.1. The contour plots of , andxx yy xyσ σ σ are shown in Fig. 5 (a), Fig. 5 (b) and Fig. 6 (a)
respectively. The SIF values calculated by XIGA are compared with XFEM as shown in Fig. 6 (b).

Fig. 5. (a) Contour plot of xxσ for an edge crack with multiple inclusions; (b) Contour plot of yyσ for an edge crack with multiple inclusions.

Fig. 6. (a) Contour plot of xyσ for an edge crack; (b) SIF variation with crack length for an edge crack with multiple inclusions.



670   G. Bhardwaj et al.  /  Procedia Engineering   64  ( 2013 )  661 – 670 

5. Conclusion

In the present work, XIGA has been used for the simulation of plane crack problems in the presence of holes
and inclusions. Both the geometry and solution are defined using NURBS basis function. These simulations show
that the accuracy achieved using XIGA with higher order NURBS basis function found more as compared to
XFEM. It is also concluded that the presence of discontinuities i.e. holes and inclusions significantly affect the
SIFs. The effect of holes on SIF is found more as compared to the inclusions. This work can be extended further
for the analysis of fatigue crack in the presences of multiple flaws.
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