510 research outputs found

    Polarization-squeezed light formation in a medium with electronic Kerr nonlinearity

    Full text link
    We analyze the formation of polarization-squeezed light in a medium with electronic Kerr nonlinearity. Quantum Stokes parameters are considered and the spectra of their quantum fluctuations are investigated. It is established that the frequency at which the suppression of quantum fluctuations is the greatest can be controlled by adjusting the linear phase difference between pulses. We shown that by varying the intensity or the nonlinear phase shift per photon for one pulse, one can effectively control the suppression of quantum fluctuations of the quantum Stokes parameters.Comment: final version, RevTeX, 10 pages, 5 eps figure

    Universal shape law of stochastic supercritical bifurcations: Theory and experiments

    Full text link
    A universal law for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-like slice subjected to optical feedback are in excellent agreement.Comment: 5 pages, 5 figure

    Ultranarrow resonance peaks in the transmission and reflection spectra of a photonic crystal cavity with Raman gain

    Full text link
    The Raman gain of a probe light in a three-state Λ\Lambda -scheme placed into a defect of a one-dimensional photonic crystal is studied theoretically. We show that there exists a pump intensity range, where the transmission and reflection spectra of the probe field exhibit \textit{simultaneously} occurring narrow peaks (resonances) whose position is determined by the Raman resonance. Transmission and reflection coefficients can be larger than unity at pump intensities of order tens of μ\muW/cm2^{2}. When the pump intensity is outside this region, the peak in the transmission spectrum turns into a narrow dip. The nature of narrow resonances is attributed to a drastic dispersion of the nonlinear refractive index in the vicinity of the Raman transition, which leads to a significant reduction of the group velocity of the probe wave.Comment: 9 pages, 3 figure

    Soliton absorption spectroscopy

    Full text link
    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique.Comment: 9 pages, 7 figures

    Chaotic Phenomenon in Nonlinear Gyrotropic Medium

    Full text link
    Nonlinear gyrotropic medium is a medium, whose natural optical activity depends on the intensity of the incident light wave. The Kuhn's model is used to study nonlinear gyrotropic medium with great success. The Kuhn's model presents itself a model of nonlinear coupled oscillators. This article is devoted to the study of the Kuhn's nonlinear model. In the first paragraph of the paper we study classical dynamics in case of weak as well as strong nonlinearity. In case of week nonlinearity we have obtained the analytical solutions, which are in good agreement with the numerical solutions. In case of strong nonlinearity we have determined the values of those parameters for which chaos is formed in the system under study. The second paragraph of the paper refers to the question of the Kuhn's model integrability. It is shown, that at the certain values of the interaction potential this model is exactly integrable and under certain conditions it is reduced to so-called universal Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical consideration. It shows the possibility of stochastic absorption of external field energy by nonlinear gyrotropic medium. The last forth paragraph of the paper is devoted to generalization of the Kuhn's model for infinite chain of interacting oscillators

    Analysis of Optical Pulse Propagation with ABCD Matrices

    Get PDF
    We review and extend the analogies between Gaussian pulse propagation and Gaussian beam diffraction. In addition to the well-known parallels between pulse dispersion in optical fiber and CW beam diffraction in free space, we review temporal lenses as a way to describe nonlinearities in the propagation equations, and then introduce further concepts that permit the description of pulse evolution in more complicated systems. These include the temporal equivalent of a spherical dielectric interface, which is used by way of example to derive design parameters used in a recent dispersion-mapped soliton transmission experiment. Our formalism offers a quick, concise and powerful approach to analyzing a variety of linear and nonlinear pulse propagation phenomena in optical fibers.Comment: 10 pages, 2 figures, submitted to PRE (01/01

    Bose-Einstein condensation of magnons under incoherent pumping

    Full text link
    Bose-Einstein condensation in a gas of magnons pumped by an incoherent pumping source is experimentally studied at room temperature. We demonstrate that the condensation can be achieved in a gas of bosons under conditions of incoherent pumping. Moreover, we show the critical transition point is almost independent of the frequency spectrum of the pumping source and is solely determined by the density of magnons. The electromagnetic power radiated by the magnon condensate was found to scale quadratically with the pumping power, which is in accordance with the theory of Bose-Einstein condensation in magnon gases

    Theory of Spike Spiral Waves in a Reaction-Diffusion System

    Full text link
    We discovered a new type of spiral wave solutions in reaction-diffusion systems --- spike spiral wave, which significantly differs from spiral waves observed in FitzHugh-Nagumo-type models. We present an asymptotic theory of these waves in Gray-Scott model. We derive the kinematic relations describing the shape of this spiral and find the dependence of its main parameters on the control parameters. The theory does not rely on the specific features of Gray-Scott model and thus is expected to be applicable to a broad range of reaction-diffusion systems.Comment: 4 pages (REVTeX), 2 figures (postscript), submitted to Phys. Rev. Let

    Linear Relaxation Processes Governed by Fractional Symmetric Kinetic Equations

    Full text link
    We get fractional symmetric Fokker - Planck and Einstein - Smoluchowski kinetic equations, which describe evolution of the systems influenced by stochastic forces distributed with stable probability laws. These equations generalize known kinetic equations of the Brownian motion theory and contain symmetric fractional derivatives over velocity and space, respectively. With the help of these equations we study analytically the processes of linear relaxation in a force - free case and for linear oscillator. For a weakly damped oscillator we also get kinetic equation for the distribution in slow variables. Linear relaxation processes are also studied numerically by solving corresponding Langevin equations with the source which is a discrete - time approximation to a white Levy noise. Numerical and analytical results agree quantitatively.Comment: 30 pages, LaTeX, 13 figures PostScrip
    • …
    corecore