The Raman gain of a probe light in a three-state Λ-scheme placed
into a defect of a one-dimensional photonic crystal is studied theoretically.
We show that there exists a pump intensity range, where the transmission and
reflection spectra of the probe field exhibit \textit{simultaneously} occurring
narrow peaks (resonances) whose position is determined by the Raman resonance.
Transmission and reflection coefficients can be larger than unity at pump
intensities of order tens of μW/cm2. When the pump intensity is
outside this region, the peak in the transmission spectrum turns into a narrow
dip. The nature of narrow resonances is attributed to a drastic dispersion of
the nonlinear refractive index in the vicinity of the Raman transition, which
leads to a significant reduction of the group velocity of the probe wave.Comment: 9 pages, 3 figure