3 research outputs found

    Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten Adjungierten

    Get PDF
    Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen. Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigkeiten der diskreten Zielfunktion zu erwarten, wenn bei Änderungen der Formparameter sich das Netz unstetig ändert (z.B. Änderung Anzahl Knoten, Umschalten der Konnektivität). Mit zunehmender Feinheit der Netze verschwinden jedoch diese Unstetigkeiten aufgrund der Konvergenz der Diskretisierung. Da im Zuge der Formoptimierung Zielgröße und Gradient für eine Vielzahl von Iterierten der Lösung bestimmt werden müssen, ist man bestrebt die Kosten einer einzelnen Auswertung möglichst gering zu halten, z.B. indem man mit nur moderat feinen oder adaptiv verfeinerten Netzen arbeitet. Aufgabe dieser Diplomarbeit ist es zu untersuchen, ob mit gängigen Methoden adaptiv verfeinerte Netze hinreichende Genauigkeit der Auswertung von Zielgröße und Gradient erlauben und ob eventuell Anpassungen der Optimierungsstrategie an die adaptive Vernetzung notwendig sind. Für die Untersuchungen sind geeignete Modellprobleme aus der Festigkeitslehre zu wählen und zu untersuchen.Shape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution. As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh. In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied

    Numerical Aspects in Optimal Control of Elasticity Models with Large Deformations

    Get PDF
    This thesis addresses optimal control problems with elasticity for large deformations. A hyperelastic model with a polyconvex energy density is employed to describe the elastic behavior of a body. The two approaches to derive the nonlinear partial differential equation, a balance of forces and an energy minimization, are compared. Besides the conventional volume and boundary loads, two novel internal loads are presented. Furthermore, curvilinear coordinates and a hierarchical plate model can be incorporated into the formulation of the elastic forward problem. The forward problem can be solved with Newton\\\'s method, though a globalization technique should be used to avoid divergence of Newton\\\'s method. The repeated solution of the Newton system is done by a CG or MinRes method with a multigrid V-cycle as a preconditioner. The optimal control problem consists of the displacement (as the state) and a load (as the control). Besides the standard tracking-type objective, alternative objective functionals are presented for problems where a reasonable desired state cannot be provided. Two methods are proposed to solve the optimal control problem: an all-at-once approach by a Lagrange-Newton method and a reduced formulation by a quasi-Newton method with an inverse limited-memory BFGS update. The algorithms for the solution of the forward problem and the optimal control problem are implemented in the finite-element software FEniCS, with the geometrical multigrid extension FMG. Numerical experiments are performed to demonstrate the mesh independence of the algorithms and both optimization methods

    Optimal Control Problems in Finite-Strain Elasticity by Inner Pressure and Fiber Tension

    Get PDF
    Optimal control problems for finite-strain elasticity are considered. An inner pressure or an inner fiber tension is acting as a driving force. Such internal forces are typical, for instance, for the motion of heliotropic plants, and for muscle tissue. Non-standard objective functions relevant for elasticity problems are introduced. Optimality conditions are derived on a formal basis, and a limited-memory quasi-Newton algorithm for their solution is formulated in function space. Numerical experiments confirm the expected mesh-independent performance
    corecore