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Notation

(·),s . . . . . . . . . . . . Partial differential with respect to the s-th component on the world element

[·]r . . . . . . . . . . . . . r-th component of a vector

u . . . . . . . . . . . . . . . Analytical solution of the deformation of the Lamé problem

x1, x2 . . . . . . . . . Coordinates in a two-dimensional space

λ, µ . . . . . . . . . . . Lamé constants

σ . . . . . . . . . . . . . . . Stress tensor

ε . . . . . . . . . . . . . . . Strain tensor

ΓD . . . . . . . . . . . . . Partial boundary with the Dirichlet condition

ΓN . . . . . . . . . . . . . Partial boundary with the Neumann condition

Ω . . . . . . . . . . . . . . Domain where the PDE is solved

u, uh . . . . . . . . . . . Discretized Solution

N . . . . . . . . . . . . . . Number of nodes of a mesh

T . . . . . . . . . . . . . . Triangulation of Ω

ϕi . . . . . . . . . . . . . . Basis function of node i

ϕr
i . . . . . . . . . . . . . Test functions of node i with ϕi in the r-th component

a(·, ·) . . . . . . . . . . Bilinear form

b(·) . . . . . . . . . . . . Linear right hand side form

K . . . . . . . . . . . . . . Stiffness matrix

f . . . . . . . . . . . . . . . Right hand side or load vector

u . . . . . . . . . . . . . . . Solution vector

J . . . . . . . . . . . . . . . Jacobian of the element mapping

I . . . . . . . . . . . . . . . Performance function

p . . . . . . . . . . . . . . . Vector holding the shape parameters

ur,s . . . . . . . . . . . . Partial differential of the r-th component of u with respect to xs on the world

element

r . . . . . . . . . . . . . . . is equal 2 for r = 1 and equal 1 for r = 2

DAM . . . . . . . . . . Discrete Adjoint Method
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dof . . . . . . . . . . . . . Degrees of freedom

FEINS . . . . . . . . Finite Elements for Incompressible Navier-Stokes

FEM . . . . . . . . . . Finite Element Method

PCG-Method Preconditioned Conjugate Gradient Method
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Preface

Shape optimization describes the determination of the geometric shape of a domain with a

partial differential equation (PDE) with the purpose that a specific given performance function

is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can

be used to evaluate the gradient of a performance function with respect to an arbitrary number of

shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in

the numerical optimization algorithm to search for the optimal solution. As both function value

and gradient are computed for the discretized PDE, they both fundamentally depend on the

discretization. In using the coarse meshes, discontinuities in the discretized objective function

can be expected if the changes in the shape parameters cause discontinuous changes in the

mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence

of the discretization these discontinuities vanish with increasing fineness of the mesh. In the

course of shape optimization, function value and gradient require evaluation for a large number

of iterations of the solution, therefore minimizing the costs of a single computation is desirable

(e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is

to investigate if adaptively refined meshes with established methods offer sufficient accuracy of

the objective value and gradient, and if the optimization strategy requires readjustment to the

adaptive mesh design. For the investigation, applicable model problems from the science of the

strength of materials will be chosen and studied.
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1. Introduction

The aim of shape optimization is to answer the question which shape of a partial differential

equation (PDE) domain causes the PDE solution to have the most desirable properties concern-

ing a given criterion. In this context the meaning of optimality is manifold, whereby various

practical models can be the object of investigation. In this work, we consider the Lamé problem,

that is, for example, a beam under the influence of exterior forces. Its shape shall be determined

such that a given goal function is minimized. Figure 1.1 shows an example of two beams with

almost the same stiffness but requiring different amounts of material.

(a) Initial beam (b) Optimized beam

Figure 1.1.: Shape optimization of a standard beam

Since most of the problems are not solvable with analytic elasticity theory we use numerical

approximation methods like the finite element method (FEM). The standard FEM does not allow

parameters describing the domain, yet the optimization is still possible. We use the discrete

adjoint method (DAM) which is used to determine the gradient of the goal function efficiently.

This gradient can be used by a numerical optimization algorithm to solve the optimization

problem. Within the scope of this work, we consider only two-dimensional linear elasticity

problems. The task is to extend the FE-solver FEINS1 from R. Schneider with the adaptive

mesh design and the DAM and embed it in an optimization algorithm.

1Finite Elements for Incompressible Navier Stokes. Although starting as a solver for Navier Stokes problems, it
was extended to Lamé problems as well.
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2. Lamé problem

2.1. Analytic formulation of the Lamé problem

Linear elasticity

Object of our investigation is a beam that is loaded with an external force. Volume forces like

gravity are neglected in this work. We are interested in the displacement u of the beam due to the

external force. Assuming that the material has isotropic behavior and that the deformations are

very small compared to the geometry, the linear elasticity theory can be applied, [3, chapter 6.3],

thus the symmetrical strain tensor is approximated by

εij(u) :=
1
2
(ui,j + uj,i) with ui,j :=

∂ui

∂xj
,

and the symmetrical stress tensor is

σ(u) := Cε(u), (2.1)

with the symmetrical stiffness tensor C which is the tensor expression of Hooke’s law, [3, chap-

ter 6.1]. Further, using the linear material law from Hooke, the stiffness tensor C can be written

as 

σ11

σ22

σ33

σ12

σ13

σ23


= C



ε11

ε22

ε33

ε12

ε13

ε23


=



λ + 2µ λ λ

λ λ + 2µ λ

λ λ λ + 2µ

2µ

2µ

2µ





ε11

ε22

ε33

ε12

ε13

ε23


, (2.2)

and its inverse
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C−1 =
1

2µ(3µ + 2λ)



2(λ + µ) −λ −λ

−λ 2(λ + µ) −λ

−λ −λ 2(λ + µ)

3λ + 2µ

3λ + 2µ

3λ + 2µ


, (2.3)

with the Lamé constants λ and µ that characterize the material. A common alternative char-

acterization of the material is by Young’s modulus E and Poisson’s ration ν which are related

to λ and µ according to

λ = Eν
(1+ν)(1−2ν) , µ = E

2(1+ν) ,

E = µ(3λ+2µ)
λ+µ , ν = λ

2(λ+µ) .

The physics background constrains these constants to λ > 0, µ > 0 and E > 0, 0 < ν < 1
2 .

Equation (2.1) can be rewritten as the Lamé partial differential equation

−2µ div ε(u)− λ grad div u = 0 in Ω (2.4)

with boundary conditions

u = 0 on ΓD (Dirichlet) (2.5)

σ(u) · n = g on ΓN (Neumann), (2.6)

where Ω is the domain describing the geometrical shape of the mechanical structure, u is the

displacement due to the forces, ε(u) is the resulting strain and σ(u) the stress. The external

force per area g acts on the part Γ1 of the boundary, called the Neumann boundary. The

beam is clamped on the boundary part ΓD, called the Dirichlet boundary. The remaining edge

∂Ω\ (ΓD ∪ΓN ) is considered stress-free, meaning a Neumann condition with g = 0. This partial

differential equation in its analytical formulation is a second order elliptic PDE.

Reduction to two dimensions

Additionally, the beam should be reducible to a two-dimensional shape in the x1-x2-plane,

meaning that the shape of the beam and the forces do not depend on the depth x3. There

are two main cases that appear in practice: Plane strain, where the strain vanishes in the
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x3-direction, and plane stress, where the stress vanishes in x3-direction, [3, chapter 6.5].

The plane strain applies for cases where displacements in x3-direction are not possible, for

example very wide beams. Therefore strains in x3-direction vanish,

ε=


ε11 ε12 0

ε12 ε22 0

0 0 0

 .

This yields σi3 = σ3i = 0 for i = 1, 2 and with ε33 = 0 and the material law (2.3), we gain the

equation

σ33 =
λ

2(λ + µ)
(σ11 + σ22).

By eliminating σ33, (2.1) is reduced to
σ11

σ22

σ12

 =


λ + 2µ λ 0

λ λ + 2µ 0

0 0 2µ




ε11

ε22

ε12

 (2.7)

meaning that the x3-component in the Lamé equation (2.4) is simply ignored.

The plane stress applies for cases where displacements in x3-direction are possible, for example

thin plates, but stresses in x3-direction vanish,

σ =


σ11 σ12 0

σ12 σ22 0

0 0 0

 .

This yields εi3 = ε3i = 0 for i = 1, 2 and with σ33 = 0 and (2.2), we gain the equation

ε33 = − λ

λ + 2µ
(ε11 + ε22).

By eliminating ε33 in (2.1) and with λ̃ = 4µ(λ+µ)
λ+2µ , we gain

σ11

σ22

σ12

 =


λ̃ + 2µ λ̃ 0

λ̃ λ̃ + 2µ 0

0 0 2µ




ε11

ε22

ε12

 . (2.8)

Comparing this result with (2.7), it is reasonable to consider only plane strain because the case

of plane stress is covered by simply adjusting the Lamé constant λ.
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2.2. Finite Element Method

There are a number of special domain geometries where the Lamé problem and its PDE can

be solved analytically but these are not sufficient for the shape optimization in general. A

common and wide-spread numerical approach to solve PDEs is the Finite Element Method

(FEM). The main idea is to introduce a discretization of the infinite dimensional function space

to approximate the solution in a suitable finite dimensional function space, i.e. only with a

finite number of degrees of freedom. For that purpose the domain Ω is triangulated into a

finite number of elements, called the mesh. Rewriting the PDE into a weak formulation and

introducing basis functions on the elements, a linear system of equation can be obtained as an

equivalent problem. Due to the nature of the basis functions, this linear system is sparse and can

be efficiently solved with modern iterative solvers even when the number of unknowns is very

large and classical direct solvers cannot handle it. In this chapter, the FEM is briefly introduced

to clarify notation and its application.

Weak formulation

Applying the FEM requiers the weak formulation of the PDE (2.4). We therefor introdce the

function space

H1
ΓD

(Ω) =
{

v ∈ H1(Ω) : v|ΓD
= 0

}
.

Multiplying with an arbitrary test function v ∈ H1
ΓD

(Ω)2 and integrating by parts yields the

variational formulation, [3, chapter 6.3]:

Find u ∈ H1
ΓD

(Ω)2 such that

a(u, v) = b(v) ∀v ∈ H1
ΓD

(Ω)2 (2.9)

a(u, v) :=
∫
Ω

ε(v) : Cε(u) dx (2.10)

:=
∫
Ω

λ(O · u)(O · v) + 2µ

2∑
i,j=1

εij(u)εij(v) dx (2.11)

b(v) :=
∫

ΓN

g · v ds. (2.12)

We remark that a is a bilinear form, b is linear and that u and v have components in x1 and x2

direction. The operator ’:’ is defined as ε : σ :=
∑
ij

[ε]ij [σ]ij = tr(εσT ). The Neumann boundary

condition in (2.4) is included in the linear form (2.9). To implement the Dirichlet boundary

condition we use a projector to fix the values of the affected nodes [8].
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Meshing and element type

A mesh generator creates a triangulation T of the domain Ω, yielding triangular elements Ti ∈ T.

We now choose basis functions on these elements, usually polynomials as their arithmetics are

relatively easy. For example, a linear function over Ti has three degrees of freedom that can

be uniquely defined by its function values of the three vertices of the triangle. In this work,

quadratic basis functions are preferred because they offer a higher convergence rate than linear

ones. Besides the three corner nodes the three mid nodes of the edges are used too, so there are

six base nodes in total, compare Figure 2.1.

Figure 2.1.: Linear and quadratic elements and their nodes that define the ansatz functions

The additional mid nodes do not need to be in the center of the edges, which leads to the idea

of curvilinear triangles that approximate curvilinear shapes much better than straight triangles.

Instead of the function space H1
ΓD

(Ω) we consider the discretized function space

Sh =
{
v ∈ H1

ΓD
(Ω)2 : v |Ti

∈ P2(Ti)2 ∀Ti ∈ T
}

of piecewise quadratic functions. The ansatz functions are chosen such that

ϕi(sj) = δij :=

{
1 if i = j

0 else
, (2.13)

where sj are the nodes of the mesh. This condition uniquely defines the basis functions for each

node (Lagrange interpolation). Examples of basis functions for corner and mid nodes can be

seen in Figure 2.2 while the ansatz functions are zero on the remaining elements.

The solution u and the test function v can be approximated by

u(x) ≈ uh(x) =
N∑

i=1

2∑
r=1

ur
i ϕ

r
i (x) ∈ Sh, v(x) ≈ vh(x) =

N∑
i=1

2∑
r=1

vr
i ϕ

r
i (x) ∈ Sh, (2.14)

i.e. restricting (2.9) to the finite dimensional space Sh. N is the number of nodes, ur
i , v

r
i ∈ R are

coefficients, and ϕr
i ∈ Sh denotes the basis function, i.e. a vector valued function, corresponding

to the node i for the r-th component where the other component is zero. As one can see easily,
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(a) in a corner node (b) in a mid node

Figure 2.2.: The two types of ansatz functions

due to the definition (2.13) of the basis functions, ur
i is the function value of uh at the node xi

in the r-th dimension. We insert u ≈ uh and v ≈ vh in the weak formulation (2.9) and due to

the linearity of a(u, ·) and b(·), testing with all functions vh ∈ Sh is equivalent to testing with

all basis functions only. Thus we get the discretized formulation

a(uh, ϕr
i ) = b(ϕr

i ) ∀i = 1, . . . , N ; r = 1, 2. (2.15)

In addition, we introduce the quantities K ∈ R2N×2N and u, f ∈ R2N defined by

[K](i,r),(j,s) = a(ϕs
j , ϕ

r
i ) ∀i, j = 1, . . . , N ; r, s = 1, 2 ,[

f
]
(i,r)

= b(ϕr
i ), (2.16)

[u](i,r) = ur
i .

To understand u as a one-column vector, it is necessary to sort the entries. In this work the

x1-entries are sorted first, i.e.

u = (u1
1, u

1
2, . . . , u

1
N , u2

1, . . . , u
2
N ).

With this numbering, the index (i, r) represents a number i + (r − 1)N and with the notation

(2.16), the discretized Lamé equation (2.15) can be rewritten as the system of linear equations

Ku = f. (2.17)

The matrix K is called stiffness matrix and f load vector. It remains to solve the linear system

of equations (2.17) and gain the solution vector u ∈ R2N . Once we have u the approximate

solution uh is known and can be evaluated in each point.
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Mapping between master and world element

To evaluate the entries of K effectiently, they are assembled element wise with the use of cubature

formulas and mapping functions M between a master T̂ element and a world element Ti. In the

following all symbols with ’ ̂ ’ refer to the master element, a triangle defined by the vertices

(0, 0), (1, 0) and (0, 1). The basis functions ϕ̂i on the master element are used for the mapping

M ,

x = M(x̂) =
∑

i

xiϕ̂i(x̂),

where xi are the positions of the world element’s nodes. This mapping leads to curvilinear

triangles (compare Figure 2.3). The basis functions are simply mapped like ϕ(x) = ϕ̂(M−1(x)) =

ϕ̂(x̂), in particular ϕ(xk) = ϕ̂(x̂k) for the integration points of the cubature formulas. Due to

this mapping, the integration points and their weights for the cubature formulas need to be

defined only on the master element. However, one can see that the gradient Oϕ(xk) and hessian

H(xk) require a seperate transformation.

Figure 2.3.: Mapping M of a point on the master element to the world element Ti

The Jacobian J ∈ R2×2 in a point xk is required for the mapping of the gradient or Hessian and

also for the cubature formulas. Recalling some properties of isoparametric finite elements, [9],

we have

J(x̂k) =
[
∂x
∂x̂

]
=

∑
i

xi(Ô
[
ϕ̂i(x̂k))T

]T
.

The world gradient Oϕ can be calculated by

Oϕ(x(x̂)) = J(x̂)−T Ôϕ̂(x̂).

Differentiating the world gradient again, we obtain the world Hessian
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H(x(x̂)) =
[

∂2x̂k

∂xi∂xj

∂ϕ̂

∂x̂k

]
(i,j)

+ J−T (x̂)Ĥbϕ(x̂)J−1(x̂),

where we use the Einstein summation convention for the first quantity which contains the second

order differentials of the mapping M−1. This quantity vanishes if the triangle is not curvilinear

but straight. Additionally, the Hessian H is only needed in the error estimator. We neglect

this quantity because the gained accuracy would not justify the additional computational costs.

Therefore the Hessian is evaluated by

Hϕ(x(x̂)) ≈ J(x̂)−T Ĥbϕ(x̂)J(x̂)−1.

Once we are able to compute the world gradient and Hessian, integrals over a curvilinear triangle

Ti and integrals over curvilinear edges Γi can be evaluated by cubature formulas

∫
Ti

f(x) dΩ ≈
∑

k

ωkf̂(x̂k) |det(J(x̂k))| ,

∫
Γi

f(x) ds ≈
∑

k

ωkf̂(x̂k) ‖t(x̂k)‖2 ,

where the tangent t is computed by

‖t(x̂k)‖2 :=

∥∥∥∥∥∑
i

xiÔϕ̂i(x̂k)

∥∥∥∥∥
2

. (2.18)

Normally, standard triangles can be exactly evaluated with a sufficiently high order cubature

formula. Since the inverse mapping M−1 does not have to be quadratic, cubature formulas of

degree two with six integrations points ([5], [6] and [4]) are an approximation. Again, the less

curvilinear the triangle is and the more it relates to a standard triangle, the less is the error.

2.3. Solution method

There are several ways to solve linear systems of equations, ranging from direct solvers like

Gaussian elimination or various decompositions to iterative solvers like Gauss-Seidel or conjugate

gradient method. Usually the FEM disrectization of a Lamé problem requires a large number of

nodes, thus the number of degree of freedom of the linear system can be too large to solve with

direct solvers, mainly due to memory requirements, computational cost and even for numerical

accuracy. In contrast to that, iterative solvers may take advantage of the sparsity of the system
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to keep memory usage and computational cost at a level still manageable. As the convergence

rate of such solvers often depends on the condition of the system, various methods have been

developed to compensate large condition numbers. In this section, the preconditioned conjugate

gradient method (PCG) and the multigrid preconditioner are briefly presented to show their

application in this work.

Preconditioned Conjugate Gradient method

Let the system of linear equations (2.17) be given and let u∗ be its exact solution. The stiffness

matrix is symmetric and positive definite, as well as sparse, that is only O(N) entries are non-

zero, where N is the node number of the triangulation. Unfortunately it has a high condition

number for large systems,

κ(K) := ‖K‖2

∥∥K−1
∥∥

2
= O(h−2) = O(N) (in 2D).

The step size h rapidly diminishes in size when mesh refinement steps are applied. Classic direct

solvers, like Gaussian elimination or various decompositions, become impractical for very large

node numbers because the computational cost is of order O(N2) or even higher. This is due to

fill-in during the factorization of the matrix K that destroys sparsity and thus increases memory

usage enormously. However, there are also direct solver that exploit sparsity to a certain extend

and can solve systems of moderate size.

Iterative solvers like the preconditioned conjugate gradient method rank among the most effi-

cient solvers for PDE problems and avoid these problems by exploiting the sparsity of K and

compensating the high condition number with a preconditioner. Therefore, memory usage can

be kept at O(N) and with good preconditioners like multigrid or BPX, the computational times

too. The multigrid method as a preconditioner is discussed in the next section.

Let uk be the approximate solution in the k-th step, then we have

‖u− uk‖K ≤ 2
(√

κ− 1√
κ + 1

)k

‖u− u0‖K ,

meaning that the convergence rate significantly depends on the condition number κ, [3, chap-

ter 4.3]. To accelerate the convergence, a preconditioner C−1 is used such that κ(C−1K) � κ(K)

in which way the iteration number is reduced to obtain a sufficiently accurate approximate so-

lution.

Multigrid method

Multigrid methods are fast and efficient algorithms to solve systems of linear equations that arise

from PDEs. In this work a simple version is used as a preconditioner, that is only a V-cycle
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is performed as a preconditioner step. We briefly introduce the basic idea of it and how its

components smoothing, restriction and prolongation work.

The idea bases on the observation that classic iterative solvers, like the Gauss-Seidel method,

smooth the errors of an approximate solution. In the process high frequency errors are more

strongly damped than low frequency errors, [3, chapter 5.1]. If one considers the latter type of

error on a coarser mesh, its relative frequency increases, thus the damping will be stronger if the

smoothing is applied on the coarser mesh. By doing this the high and low frequency errors can

be damped and the multigrid method works efficiently on a wide spectrum of error components.

This motivates the following approach:

A few smoothing steps are applied for the residual on the current mesh, i.e. current level of

refinement. Then the remaining residual is restricted to the next coarser level and the smoothing

steps are applied again. This procedure is repeated until the coarsest level is reached. The node

number is usually quite small on this level, so a direct solver can be used for the system of

equations. The gained correction is interpolated to the next finer levels where smoothing steps

are applied each time again. Thus, the multigrid method consists of three main ingredients:

• Smoothing: here a Gauss-Seidel sweep, reduces the high frequency errors.

• Restriction: transfers the residual error to a coarser level.

• Prolongation: interpolates the correction to a finer level.

Smoothing

We briefly introduce the Gauss-Seidel method an how it is implemented for the multigrid pre-

conditioner. Let the system of linear equations

K x = f (2.19)

be given. The matrix K is decomposed into a lower triangular matrix L and a strictly upper

triangular matrix U ,

K = L + U, where Lij =

{
kij if i ≥ j

0 else
, Uij =

{
kij if i < j

0 else
.

The system of linear equations (2.19) may be rewritten as

Lx = f − Ux.

Let x(0) be an initial guess. Then x(k+1) can be iteratively evaluated by
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x(k+1) = L−1(f − Ux(k)),

what is done by the algorithm 1.

Algorithm 1 Smoothing x(k+1) = L−1(f − Ux(k))

x := x(k) = [x1, . . . , x2N ]T is given
for i = 1 to 2N do

xi := (fi −
∑
j 6=i

kijxj)/kii

end for
return x(k+1) := x

It is required that the preconditioner C−1 is symmetric and positive definite. To achieve that,

the Gauss-Seidel iteration operator and its transpose is applied. The action of the transpose is

achieved by reversing the order of i in the smoothing algorithm 1: ”for i = 2N to 1”.

Prolongation and Restriction

The choice of the transfer operators of the residual r and correction δ between the different

mesh levels influence the convergence rate of the multigrid method. Let r(l) and δ(l) be on the

l-th level and P l
l−1 the prolongation matrix and Rl−1

l the restriction matrix that perform the

prolongation and restriction between the l − 1-th and l-th level,

δ(l) = P l
l−1δ

(l−1), r(l−1) = Rl−1
l r(l).

Conforming finite elements the prolongation P l
l−1 and the restriction Rl−1

l arise canonically, [3,

chapter 5.1]. The matrix P l
l−1 is not really formed and multiplied with δ(l−1) but rather its

action is locally performed for each node based on hierarchy information stored together with

the mesh. For simplicity of presentation we restrict the discussion to the transition from level

(l − 1) to level l. Let T denote an arbitrary element on the level (l − 1) with child elements

on level l. Since the child elements have nodes that may not belong to the father element T ,

we need to interpolate δ|T in these child nodes. Let cj be a child node that belongs to one of

the child elements. The function δ|T can be evaluated in every point on T with the help of the

values in the father nodes fi,

δ(cj) =
∑

i

δ(fi)ϕi(cj).

Since the entries of x(l−1) are the function values x(fi) by definition (2.13) and for the mapping

there holds ϕ(cj) = ϕ̂(bcj), we get
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x(cj) =
∑

i

[x(l−1)]i ϕ̂i(ĉj), (2.20)

where [x(l−1)]i ∈ R2 are the components in x1- and x2-dimension in the father node i. It can be

easily seen that this rule also includes the copying of the father nodes that belong to both levels.

This allows us to prolong δ(l−1) to δ(l) by using only itself and the values of the basis functions

in the child nodes on the master element.

This method is used in a similar way for the restriction matrix which is chosen to be the transpose

of the prolongation matrix, [3, chapter 5.1]. Let r(l) be a vector representation of the residual

functional that is restricted to the (l − 1)-th level by multiplying the restriction matrix Rl−1
l ,

r(l−1) = Rl−1
l r(l).

For each child node on the l-th level, the residual in the node is distributed over the father

nodes on the l− 1-th level. Again, the basis functions are used to determine the weights of this

distribution. Let fi be a father node on the l-th level and r|T1...Tn
be given on the child elements

with the nodes cj on the l-th level. The residual in the father node on the (l − 1)-th level is

r(fi) =
∑

j

r(cj)ϕi(cj).

With the same arguments as in (2.20), this simplifies to

r(fi) =
∑

j

[r(l)]i ϕ̂i(ĉj). (2.21)

For the father nodes that are on both levels, this means a copying of the function value in this

node plus the weighted contributions from the child nodes. Again, the residual can be restricted

by using the values of the basis functions in the child nodes on the master element.
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3. Shape Optimization

Once we can solve the Lamé problem we can face the problem of shape optimization. The task

is to find a domain such that a given goal function is optimized. In this chapter we discuss an

approach to solve this numerically, based on the approach from [8].

Parametrization of the shape

By shape, we understand the geometrical shape of the boundary ∂Ω. The shape of ∂Ω can be

interpreted locally as isomorph to a function, which has to be of a certain degree of smoothness

in order to guarantee well posed PDE problems. Thus the shape is an object from infinite di-

mensional space (e.g. the function space C1[a, b]). Numerical optimization requires a description

of the shape with a finite set of parameters. Obviously, we cannot describe all possible shapes

with a finite set but it is possible to approximate it. Bézier splines are a good approach because

they offer a great range of useful shapes and it is one of the parameterizations that are used in

manufacturing as well. A Bézier spline is a parametric curve described by cubic segments

x(t) =
3∑

i=0

xib
3
i (t) , t ∈ [0, 1],

where xi ∈ R2 are the control points and

bn
i (t) :=

(
n

i

)
ti(1− t)n−i

denotes the Bernstein polynomials. Figure 3.1 shows an example of a Bézier spline and illustrates

the parametrization. The points x0 and x3 are start and ending point of the segment and x0x1

and x2x3 define the tangents in these points.

One can increase the number of Bézier splines if a greater variety of shapes is required which

increase the parameters for the numerical optimization too. We denote the vector holding the

shape parameters with p ∈ Rn and the set of all admissible vectors of shape parameters with

P ⊂ Rn.

As we are planning to use adaptive mesh design, special attention has to be devoted to determine

the value of the curve parameter t corresponding to nodes on the shape segment. Since the

parameter t is not the arc length of the spline, an inhomogeneous distribution can cause problems
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Figure 3.1.: Segment of a Bézier spline with its control points, start and end point

in the restriction and prolongation of the multigrid method, resulting even in divergence of the

method. Since the restriction and prolongation are completely described on the master element

to simplify the calculation, it is required that the child nodes are fixed on the master element.

As it is illustrated in Figure 3.2, the mid-node of an edge does not need to be close to the point

x(t = 0.5) of a spline segment. This means that the restriction and prolongation are computed

in the wrong point. To avoid that, we set the parameter t for each each point such that the

point on the spline is close to the reference point (e.g. a child node) of the edge. This also gives

an almost uniform distribution on the spline.

Figure 3.2.: The mid node x(t = 0.5) of a Bézier splines may not be near the mid node of
the edge.

A simple way to achieve this is a bisection method. We begin with the start x0 and end x1 and

their t-values t0 and t1. There is a reference point xm on the edge x0x1 for which we want to

find a point on the spline and its t-value. To obtain an inexpensive algorithm, we consider the

proportion between the two distances,

ω∗ :=
|xm − x0|22
|xm − x1|22

and ω(t) :=
|x(t)− x0|22
|x(t)− x1|22

. (3.1)

The ratio ω is the ratio between the actual euclidean distances. Our goal is to find a point

x̃m = x(t̃) on the spline that keeps this ratio ω∗ approximately which can be achieved by

Algorithm 2.

We remark that this approach with the Bézier splines as parametric shapes does not allow

topological changes. However, desired holes can be added to the initial mesh and their shape

may change during the optimization.
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Algorithm 2 Bisection for x(t) on the Interval [t0, t1]
Input: tol ∈ (0, 1), t0, t1, x0, x1, xm are given
t := (t0 + t1)/2
h := (t1 − t0)/2
Evaluate ω∗, ω(t) by (3.1)
while ω(t) < ω∗tol or ω(t) > ω∗/tol do

h := h/2;
if ω(t) < ω∗tol then
{x(t) is too close to x1}
t := t + h and recompute ω(t)

end if
if ω(t) > ω∗/tol then
{x(t) is too close to x2}
t := t− h and recompute ω(t)

end if
end while
x̃m := x(t)

Examples for the performance function

In this work we consider to find a compromise between the material volume or area and the

deformation of the structure. The area can simply be described by the integral
∫
Ω

dx. There

are several formulations for the deformation, for example integrals of the displacement u over

subdomains Ω′ ⊂ Ω, parts of the boundary Γ′ ⊂ Γ or certain points xi:∫
Ω′

|u(x)|2 dx,

∫
Γ′

|u(x)|2 dx,
∑

i

|u(xi)|2 .

We need to remark that Ω′ should be independent of the shape parameters because otherwise the

optimization tends to shrink Ω′ rather than reduce |u(x)|2, the same holds true for parts of the

boundary Γ′. The third quantity, the evaluation in certain given points, offers a good flexibility

and is a generalization of the cubature formulas that are used to compute the other integrals. The

given points should be part of the mesh for easier computation. Another important performance

function is the potential energy given by

∫
Ω

1
2
ε(u) : Cε(u) dx +

∫
ΓN

g · u dx,

i.e. the deformation energy. It is desirable to minimize both quantities, deformation and area,

simultaneously but less material leads to larger deformations usually. In order to merge both

quantities into one performance function, we multiply them with weight factors α and β to gain

19



more flexibility, for example

Ĩ(Ω) = α
∑

i

|u(xi)|2 + β

∫
Ω

dx.

The goal is now to minimize the performance function I = I(Ω). The shape parameters p

directly describe the domain Ω thus we can write

Ĩ(Ω(p)) =: I(p) → min with p ∈ P ⊂ Rn. (3.2)

3.1. Optimization method

The prime task is the optimization of (3.2). Assuming that I is a twice differentiable function

in P , we can use a Quasi-Newton method to solve the optimization problem. To introduce the

idea and to keep notation simple, we assume that P = Rn, that is that any direction ∆p will

not lead out of P . Instead of using the usual gradient descent −OI we also consider the second

derivative,

I(pk + ∆p) ≈ I(pk) + OI(pk)T ∆p + 1/2∆pT H(pk)∆p,

where H is an approximation of the Hessian matrix of I. We differentiate this approximation

with respect to ∆p and get the gradient

OI(pk + ∆p) ≈ OI(pk) + H(pk)∆p.

By setting this gradient to zero we obtain

∆p = −H−1(pk)OI(pk),

Newtons method for optimization. As we will see later, calculating an analytic Hessian is very

expensive. Therefore we use the Inverse Broyden-Feltcher-Goldfarb-Shanno (BFGS) method

to update B = H−1 in each step, so we do not need to solve this system of linear equations.

Starting with the identity matrix as B0, Algorithm 3 performs the optimization process.

If P is bounded and ∆p can lead out of it, the direction ∆p has to be determined by minimizing

the quadratic local model with linearized constraints (SQP)

1/2∆pT H(pk) ∆p + ∆pT OI(pk) −→ min.

The Quasi-Newton method offers a faster convergence than the deepest decent method, so less
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Algorithm 3 Quasi-Newton methd for I(p) → min
Input: p0, B0, TOL are given
k = 0
while |OI(pk)| > TOL do

Gain the direction pk = −BkOI(pk)
Obtain a stepsize αk by a line search
Update pk+1 = pk + αkpk

Update Bk+1 by the inverse BFGS method
k = k + 1.

end while

iterations are required to get the optimal solution. The dimension of the optimization problem

is very small compared to the node number of the FE mesh. Therefore the computational costs

for the additional calculations in the Quasi-Newton method are negligible, but since less Lamé

problems need to be solved, the overall computational cost is reduced.

As it can be seen, only the function value I(pk) and the gradient OI(pk) with respect to the

shape parameters are required for the algorithm that is performed by the program DONLP2

from Peter Spellucci, [11] and [10]. There is also a matrix-free version of the BFGS update in

the case that the number of shape parameters is very large [7].

3.2. Discrete Adjoint Method

Determining the gradient OI analytically is very difficult. A simple approach to determine OI

numerically is a standard difference quotient, that is to obtain an approximation of the gradient

by evaluating ∂I
∂pi

(p) ≈ I(p+hei)−I(p)
h , where ei is the i-th vector of the standard basis. However,

the drawback of this approach is the great computational cost because for each component of

the gradient it is requires to solve a Lamé problem, including assembling and solving the system

of linear equations. The latter needs to be done with a relatively high accuracy because the

stepsize h should be sufficiently small to obtain a good approximation for the gradient OI. Also,

the choice of h is difficult because too large values of h result in a vague approximation while

too small values cause numerical cancellation that perturbs the gradient too.

An attractive alternative is the discrete adjoint method (DAM) [8], whose idea and derivation

we repeat here for completeness. Let I be a given performance function that is differentiable

with respect to the shape parameters and discretized by cubature formulas, for example

21



Ĩ(Ω) = α
∑

i

|u(xi)|2 + β

∫
Ω

dx

≈ I(p) =
∑

i

|u(xi)|2 + β
∑
T∈T

∑
k

|det(J(x̂k))|

This discretisized performance function I(p) depends on the shape parameters p and the com-

ponents of the deformation vector u := [ur
i ](i,r), which itself depend on the shape parameters,

I = I(u(p), p),

where u(p) is implicitly given by the system

K(p) u(p)− f(p) =: R(u(p), p) = 0.

We remark that both the stiffness matrix K and the load vector f depend on p because the

integration domains in (2.9) are affected by p. Let the perturbation δp be small, so terms of

higher order can be neglected as we are only looking for the first derivatives. We get

δI =
∂I

∂u
δu +

∂I

∂p
δp. (3.3)

The partial derivative ∂
∂u refers to the first derivate with respect to the components of u. With

the condition that u + δu has to solve the perturbed problem, it yields that

δR =
∂R

∂u
δu +

∂R

∂p
δp = 0. (3.4)

With this equation, δu is implicitly given. As δR = 0, it can be multiplied by an arbitrary term

ΨT and the new product is subtracted from the right hand side of (3.3). Rearranging gives

δI =
∂I

∂u
δu +

∂I

∂p
δp−ΨT

(
∂R

∂u
δu +

∂R

∂p
δp

)
=

(
∂I

∂u
−ΨT ∂R

∂u

)
δu +

(
∂I

∂p
−ΨT ∂R

∂p

)
δp. (3.5)

Now, we want to avoid the evaluation of δu because it is expensive and has to be done for each

pertubation direction δp seperately. Therefore, we choose ΨT such that the first term of (3.5)

vanishes,
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∂I

∂u
−ΨT ∂R

∂u

!= 0

⇔
[
∂R

∂u

]T

Ψ =
[
∂I

∂u

]T

,

so δI can be evaluated using only Ψ and δp. As Ψ is independent of δp, the gradient becomes

∇I =
∂I

∂p
−ΨT ∂R

∂p
.

The chain rule with respect to the node positions si allows the evaluation of the partial derivatives
∂
∂p ,

∂

∂p
=

∑
i

∂si

∂p

∂

∂si
.

The derivatives ∂
∂u and ∂

∂s are calculated directly from the cubature formulas as shown in the

next section. Casteljau’s algorithm determines the node positions of the nodes on the shape

segments and can be differentiated to obtain ∂s
∂p , [8, ].

The cubature formulas for I and R

To gain the required derivatives for the discrete adjoint method, we have to analyze the cubature

formulas for I and R. To simplify notation in the following, we drop the (xk) of the functions

since most of them are evaluated in the integration points xk. The partial derivative ∂
∂xr

(·) with

respect to the r-th dimension on the world element is shortened by (·),r and [.]r denotes the r-th

component of a vector. For example, [u]x1,x2 is the partial derivative of the x1-component of

u with respect to x2. We recall that ϕi is the basis function in the node i while ϕr
i is the test

function that consists of ϕi in the r-th component and zero functions in the other components.

The test functions for edge integrals and domain integrals are the same yet the integration points

are different. We do not use a different notation because it is obvious whether it is an integral

over an edge or a domain. For an exemplary discretized performance function we have

I = α
∑

i

|u(xi)|2 + β

∫
Ω

dx

= α
∑

i

|u(xi)|2 + β
∑
T∈T

∑
k

wk |det(J)| . (3.6)

For the parts Ku and f of the residuum R = Ku− f we obtain
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[Ku](i,r) =
∑
(j,s)

K(i,r),(j,s)u(j,s) =
∑
(j,s)

a(ϕs
j , ϕ

r
i )u(j,s)

= a(
∑

u(j,s)ϕ
s
j , ϕ

r
i ) = a(u, ϕr

i )

=
∫
Ω′

λ(O · u)(O · ϕr
i ) + 2µ

2∑
i,j=1

εij(u)εij(ϕr
i ) dx

=
∑
el

∑
k

wk |det(J)|
{

λ([u]x,x + [u]y,y)ϕi,r + 2µ

(
[u]r,rϕi,r +

1
2
([u]x,y + [u]y,x)ϕi,r

)}
,

−
[
f
]
(i,r)

= b(ϕr
i ) =

∫
ΓN

[g]r · ϕi ‖t(x̂k)‖2 =
∑
bd

∑
k

wk [g]r ϕi ‖t(x̂k)‖2 ,

where

r =

{
2 for r = 1

1 for r = 2.

The derivatives with respect to the components of u

Assuming that the points of interest xi are also nodes of the mesh, the derivatives of the cubature

formulas for the discretized performance function (3.6) with respect to the components of u are

∂I

∂ [u](j,s)
= α

∑
i

∂

∂ [uj ]s
|u(xi)|2

= α
∑

i

2 [u](i,s) δij .

The residual R = Ku − f is obviously linear with respect to u as K and f are independent of

u, thus [
∂R

∂ [u](j,s)

]
(i,r)

= K(i,r),(j,s), or
∂R

∂u
= K.

The derivatives with respect to the node positions xi

Following the approach in [9], one can observe that the derivatives with respect to the node

positions xi can be reduced to the derivatives of the four terms

|det(J)| , ϕi,r, ‖t(x̂k)‖2 , [u]t,r,
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because the remaining terms do not depend on the node positions. We remark that it is a matter

of the modeling whether the value of the load g depends on the shape parameters or not. In this

work we assume that g does not, otherwise corresponding terms have to be added. According

to [9] we have

∂ϕi,r

∂ [xj ]s
= −ϕj,rϕi,s

∂ |det(J)|
∂ [xj ]s

=
[
|det(J)|J−T 4̂ϕ̂j

]
s
.

For the basis function ϕi, and therefore also for u, the derivatives with respect to the node

positions vanish,

∂ϕi(xk)
∂ [xj ]s

≡ 0,

∂u(xk)
∂ [xj ]s

≡ 0,

as all functions are evaluated at xk whose position ob the reference element is independent of

[xj ]s.

Differentiating the definition of u(2.14) we obtain

∂[u]t,r
∂ [xj ]s

= −ϕj,r[u]t,s,

and with the chain rule and the tangent vector t from (2.18) it yields

∂ ‖t(x̂k)‖2

∂ [xj ]s
=

1
‖t(x̂k)‖2

[t(x̂k)]s ϕj .

With these formulas the derivatives of the performance function can be written as

∂I

∂ [xj ]s
=

∂

∂ [xj ]s

[∑
T∈T

∑
k

wkβ |det(J)|

]

=
∑
T∈T

∑
k

wkβ
∂ |det(J)|
∂ [xj ]s

.

For the benefit of clarity the residual R is split into three parts, the right hand side, the λ- and

the µ-part, the whole derivation can be seen in Appendix A.1.
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+
∂

∂ [xj ]s

∫
Ω′

λ(O · u)(O · ϕr
i ) dx


= |det(J)| {−([u]x,x + [u]y,y)ϕj,rϕi,s + (−ϕj,x[u]x,s − ϕj,y[u]y,s)ϕi,r}] ,

+
∂

∂ [xj ]s

∫
Ω′

2µ
2∑

i,j=1

εij(u)εij(ϕr
i ) dx


=

∑
el

∑
k

wk2µ

[
∂ |det(J)|
∂ [xj ]s

(
[u]r,rϕi,r +

1
2
([u]x,y + [u]y,x)ϕi,r

)
+ |det(J)| (−[u]r,rϕj,rϕi,s − ϕj,r[u]r,sϕi,r

−1
2
([u]x,y + [u]y,x)ϕj,rϕi,s −

1
2
(ϕj,y[u]x,s + ϕj,x[u]y,s)ϕi,r)

]
,

− ∂

∂ [xj ]s

∫
ΓN

[g]r · ϕi ‖t(x̂k)‖2


=

∑
bd

∑
k

wk [g]r ϕ̂i(x̂k)
∂ ‖t(x̂k)‖2

∂ [xj ]s
.
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4. Mesh refinement

The initial mesh may not offer the necessary accuracy since the approximation due to the

discretization is not sufficient. Refining the mesh uniformly the discretization allows a wider

space of functions, improving the approximation of the solution. This quickly leads to very large

node numbers which increases the computational cost so that even very good solvers still results

in unreasonable large computational time.

A different idea is the adaptive mesh design where the mesh is refined or coarsened locally, based

on an error estimator. There are several types of adaptivity, in this work we use the h-adaptivity

without coarsening since it an be easily implemented in the already existing FE-code. Only the

regions where the approximation is poor are refined, resulting in a much smaller number of

degrees of freedom than the uniform mesh refinement. One discretized Lamé problem has to be

solved in each refinement step. The current solution is interpolated to the new mesh to start

with a better initial guess for the iterative solver of (2.17). The interpolated solutions are better

guesses, thus fewer iterations are needed on the subsequent level.

This motivates the following algorithm: Starting with a coarse mesh, we solve the Lamé problem

(including assembling and solving (2.17) and estimate the error of the solution. Next, the mesh

is refined (uniform or adaptive) and the solution is interpolated on the new mesh. We now

repeat solving the Lamé problem, estimation and refinement until a given refinement level is

reached.

4.1. Red and Baensch-Green refinement

There are two main ways to refine a triangle, the uniform refinement and the bisection of a

triangle.

The uniform refinement1, also known as red refinement, splits a triangle into four similar triangles

(compare Figure 4.1). In the case of quadratic triangles, the mid-nodes become the new corner

nodes and thus are reused.

If the initial triangles are well shaped the refined triangles keep this shape. The red refinement

1Uniform mesh refinement means globally, that is all elements are refined, whereas uniform refinement is meant
locally.

27



is easily applied for the uniform mesh refinement and multiplies the node number by about four

in each step. However, there is a problem if one uses the red refinement for the h-adaptivity. If

an element is refined but its neighbor is not, hanging nodes come into existence which (unless

treated properly) cause non-conforming basis functions ϕi /∈ H1(Ω). Another solution would

be a bisection of the neighboring element but this can lead to degenerating triangles. Also, the

mesh structure may require certain features to be able to handle coarsening.

Figure 4.1.: Red refinement of a triangle

Another refinement of triangles is the bisection, also called green refinement. A given edge,

called the split edge, is split into two edges and the mid node becomes a corner node of the new

triangles (compare Figure 4.2).

Figure 4.2.: Green refinement of a triangle with a given split edge

We want to make sure that elements do not degenerate by choosing the new split edges according

to a certain pattern. An easy applied method was presented by Eberhard Baensch in [1]. The

two old edges that were not split become the split edges of the two new elements (marked in

dark green in Figure 4.2). Regardless of the refinement of a neighboring element, an element is

only split at its split edge. To avoid hanging nodes, we continue to refine elements with hanging

nodes until all hanging nodes have disappeared (compare Figure 4.3). Baensch proves in [1] that

this algorithm is finite and the triangles do not degenerate. Another method is the longest-edge

refinement where the longest edge is chosen to be the split edge. The Baensch-Green refinement

may increase the maximal interior angle of an initial element, but degenerating elements are

avoided [1].
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Figure 4.3.: We start with a marked element that is refined and yield a hanging node on
its neighbor. Since the hanging node does not belong to the split edge the
element is refined without resolving the hanging node. This is achieved in
the next step when its child element is refined again and the hanging node
removed.

4.2. Residual-based error estimator

Besides the refinement, the other essential part of an h-adaptive mesh design is the error es-

timator. It should mirror the actual error well enough to have a good guess which elements

need to be refined. A common and wide-spread choice is the residual-based error estimator [2,

chapter 10]. Let e = u−uh be the error between the the analytic solution u of the Lamé problem

(2.9) and the numerical approximation uh. We want to estimate the energy norm of the error

‖e‖a :=
√

a(e, e).

To derive the residual-based error estimate, let v ∈ V be chosen arbitrarily. Writing the inte-

gration over the whole domain Ω as a sum of integrals over the elements T , we have
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a(e, v) = a(u, v)− a(uh, v) = b(v)− a(uh, v)

=
∫
Γ

g · v ds−
∫
Ω

ε(v) : Cε(uh) dx

=
∑
T ∈T


∫

∂T∩Γ

g · v ds−
∫
T

ε(v) : Cε(uh) dx

 .

Integrating the termsn over the elements T by parts, as seen in parts Appendix (A), yields

a(e, v) =
∑
T∈T


∫

∂T∩Γ

g · v ds +
∫
T

O · Cε(uh) · v dx−
∫
∂T

n · Cε(uh) · v ds

 . (4.1)

In order to choose which elements are to be refined, we seek to obtain quantities that quantify

the error on an element Ti and need to allocate the edge integrals to their elements. The jump

discontinuity between the element T and its neighboring element T ′ is denoted by

[Cε(uh)] := Cε(uh)|T ′ − Cε(uh)|T .

Distributing the jumps [Cε(uh)] of an edge to its adjoining elements, we can rewrite a(e, v) as

integrals that belong to a certain element,

a(e, v) =
∑
T∈T


∫
T

Rh · v dx +
∫
∂T

rh · v ds

 , (4.2)

with the interior element residual Rh := O · Cε(uh) and the edge residuals

rh|γ :=


1
2n · [Cε(uh)] , if γ ⊂ ∂T \ ∂Ω,

g − n · Cε(uh), if γ ⊂ ΓN ,

0, if γ ⊂ ΓD.

(4.3)

Since the error e satisfies the Galerkin orthogonality property a(e, Ihv) = 0, with Ih being the

Clément interpolation operator to the subspace Sh, it can be added to (4.2), obtaining

a(e, v) =
∑
T∈T


∫
T

Rh · (v − Ihv) dx +
∫
∂T

rh · (v − Ihv) ds

 . (4.4)

The Cauchy-Schwarz inequality yields
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a(e, v) ≤
∑
T∈T

{
‖Rh‖0,T ‖v − Ihv‖0,T + ‖rh‖∂T ‖v − Ihv‖0,∂T

}
.

For the Clément interpolation operator there are the following inequalities, [3, chapter 3.8],

‖v − Ihv‖0,T ≤ chT ‖v‖0,ω̃T
, (4.5)

‖v − Ihv‖0,γ ≤ ch1/2
γ ‖v‖0,ω̃T

, (4.6)

with a constant c, the element diameter hT and the edge length hγ . The patch ω̃T is a neighbor-

hood of the element T . We are assuming a quasi-uniform triangulation, thus hγ can be replaced

with hT because they have the same order of magnitude. Also,
⋃
{ω̃T : T ∈ T} overlaps the

domain Ω only a finite number of times and incorporating this fact into the constant c, we

can write T instead of ω̃T . Applying the Cauchy-Schwarz inequality and inserting the Clément

approximations (4.5) and (4.6) gives

a(e, v) ≤ c

{∑
T∈T

h2
T ‖Rh‖2

0,T ‖v‖
2
0,T + hT ‖rh‖0,∂T ‖v‖

2
0,T

}1/2

.

Finally, due to the coercivity of the bilinear form a(·, ·), [3, chapter 6.3], it follows that ‖v‖0,T ≤
C ‖v‖a and inserting e in place of v results in the a posteriori error estimate

(‖e‖a)
2 ≤ C

{∑
T∈T

h2
T ‖Rh‖2

0,T + hT ‖rh‖0,∂T

}
. (4.7)

Besides the constant C all quantities of the right-hand side can be calculated once we have an

approximate solution uh. For easier reading, the right-hand side is regrouped

‖e‖2
a ≤ C

∑
T∈T

η2
T (4.8)

with η2
T = h2

T ‖Rh‖2
0,T + hT ‖rh‖2

0,∂T . (4.9)

The local quantity ηT may not necessarily be a good estimate for the true local error |‖e‖|T of

the element T but it is its contribution to the global error.

Once we have the ηT for each element, we refine all elements whose ηT has a large influence on

the global error, for example
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{
T ∈ T : ηT ≥ TOL ∗max

T∈T
|ηT |

}
, (4.10)

where TOL ∈ (0, 1) is a given tolerance. This has the drawback that sometimes only a few

elements are refined what is not desirable because we need more refinement steps to reduce the

error. More refinement steps means more memory usage for the stiffness matrices K(l) for each

level l (required for the multigrid preconditioner) and more smoothing steps in the multigrid

preconditioner than necessary. Lowering the tolerance does not need to be a good idea because

regions with rather small errors may be over refined then. This can be avoided by sorting the

error contributions ηT first and then choose a certain percentage beginning with the largest ηT .

The drawback of doing this is that the sorting algorithm normally needs O(N log N) comparisons

what may significantly increase the computational costs for large numbers of elements. However

our experiments indicate that the quality of the mesh is not necessarily better due to the sorting.

Another method for the Baensch-green refinement is to refine the marked elements twice, that is

that the children of a marked element are also refined. This accelerates the growth of the number

of nodes resulting in fewer refinement steps compared to a standard refinement. However, it

may still happen that the number of new elements strongly varies from refinement step to step.
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5. Numerical results

In this final chapter we present some numerical examples to show how the adaptive mesh design

preforms, in particular compared to the uniform mesh refinement. Also, results from shape

optimization and possible drawbacks are discussed. For all examples, the Lamé constants are

chosen to be λ = 1.15 ·105 and µ = 7.7 ·104 which would match e.g. steel. The PDE solution was

computed by the FE-solver FEINS from R. Schneider. The adaptive mesh design including the

Baensch-Green refinement and the error estimator, as well as the DAM for the Lamé problem

have been implemented in FEINS for the purpose of this work.

5.1. Tests to compare uniform and adaptive mesh refinement

If we want to compare the uniform and adaptive mesh refinement we have to keep in mind

that the accuracy of the adaptive mesh design does not improve as fast with the number of

refinement steps as for the uniform mesh refinement. Thus, comparing the two refinements

methods according to the number of refinement steps is not appropriate. Instead one should

compare either according to overall computational effort, or for simplicity according to the

number of degrees of freedom in the discretization. As discussed in section 4.2, The adaptive

mesh design does not only require an error estimator that has to be evaluated, but also the local

refinement may be more difficult than for a global uniform refinement. Still, the efficiency of

the adaptive refinement makes up for these inconveniences. In order to test the adaptive mesh

design we consider a two-dimensional disc with a crack on the left side. As shown in Figure 5.1

the lower and right edges are clamped and there is a external force acting on the right half of

the upper edge.

Figure 5.2 shows the mesh after 16 adaptive mesh refinement steps with the residual-based error

estimator. The singularity at the tip of the crack is strongly refined as well as the intersection

point between the Dirichlet and Neumann boundary condition in the upper right corner. In

addition, another singularity is at the midpoint of the upper edge, where the value of the

Neumann boundary condition changes from the external force to stress free. Other regions like

the lower right or upper left corner where the stresses are smaller and simpler are still coarse

because the discretization is already sufficient with coarser elements.
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Figure 5.1.: Disc with a crack

Figure 5.2.: Mesh of the disc with a crack after 16 adaptive mesh refinement steps

Convergence of a performance function I

We now investigate the convergence of an exemplary performance function, comparing uniform

and adaptive mesh refinement. The computations were performed on a Intel Xeon Dual Core

34



CPU 3.0 GHz with 64 GB RAM on openSUSE Linux 11.1 (x86 64). The structural element is

shown in Figure 5.3, being loaded with a constant external force on the upper edge and clamped

on the two left ends. The performance function I is the displacement evaluated in the mid x0

and the right corner x1 of the upper edge,

I = |u(x0)|2 + |u(x1)|2 .

Figure 5.3.: Example of a beam with additional support

Eight levels of uniform mesh refinement steps are performed, as can be seen in Table 5.1, and

40 levels of adaptive mesh refinements, see Table 5.2. The node number N increases about the

factor 4 with each uniform refinement which leads to great costs in memory usage while the

adaptive mesh refinement increases N only moderately.

The iterations of the PCG-solver stay constant due to the multigrid preconditioner thus the total

computational time is only O(N) per refinement step. The variation in the iteration numbers

for the adaptive mesh design is mainly caused by the irregular numbers of refined elements.

The more elements are refined, the more iterations are required to gain the required accuracy,

starting from the interpolated solution from the previous mesh. It is not unlikely to happen that

large percentages of the elements ( 30−50%) are refined in an adaptive refinement step, what is

a sign that the error is well distributed among the elements. It is also possible that no iterations

are performed because the interpolated solution already satisfies the specific stop criteria in the

PCG-solver. However, during the computations there occured problems with the PCG-solver,

the multigrid perconditioner and the adaptive mesh refinement which will be discussed later.

The residual-based error estimator provides an estimate for the global error η and the maximum

of the contributions ηT . The adaptive mesh design decreases the error faster but not as steady
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as the uniform mesh refinement. It may even happen that the estimate for the error becomes

larger when a large percentage of elements is refined.

Since there are no analytical solutions to this model problem, the function value I is compared

to a reference value of I∗ = 1.0733543293 obtained by an 100 level adaptive mesh refinement.

The relative error eI of I compared to this reference value decreases on average with an order

of magnitude of approximately O(N−0.8) for the uniform and O(N−2.2) for the adaptive mesh

refinement. Table 5.3 shows for each uniform mesh refinement step a level of adaptive mesh

design that yields a comparable relative error of the performance function value.

level N I(p) eI eOI estimate max{ηT } time (s) iter order
0 493 1.0621724 1.0E-02 0.0990 6.65E+03 2.34E+03 0.0369 1
1 1,785 1.0708423 2.3E-03 0.0723 1.88E+03 9.07E+02 0.0678 5 -1.16
2 6,769 1.0725388 7.6E-04 0.0532 6.77E+02 3.75E+02 0.2550 4 -0.84
3 26,337 1.0730578 2.8E-04 0.0390 2.71E+02 1.58E+02 1.1537 4 -0.74
4 103,873 1.0732439 1.0E-04 0.0286 1.14E+02 6.69E+01 5.2992 5 -0.72
5 412,545 1.0733129 3.9E-05 0.0208 4.84E+01 2.85E+01 23.4874 5 -0.71
6 1,644,289 1.0733387 1.5E-05 0.0151 2.08E+01 1.22E+01 98.6824 5 -0.70
7 6,565,377 1.0733483 5.6E-06 0.0108 8.92E+00 5.26E+00 400.8150 5 -0.69
8 26,237,953 1.0733518 2.3E-06 0.0076 3.84E+00 2.27E+00 1655.5513 5 -0.65

Table 5.1.: Convergence of the function value I for uniform mesh refinement for the exam-
ple from Figure 5.3

Discontinuity due to the meshing

In this work, the mesh generator Triangle from Jonathan Richard Shewchuk is used to generate

a mesh based on a given boundary which in return depends on the shape parameters. In the

optimization, a remshing is performed for each shape parameter, which may cause discontinu-

level N I(p) eI eOI estimate max{ηT } time (s) iter order
0 493 1.0621724 1.0E-02 0.0990 6.65E+03 2.33E+03 0.0369 1
5 1,053 1.0717514 1.5E-03 0.0554 1.72E+03 3.59E+02 0.1910 6 -2.56
10 2,097 1.0728899 4.3E-04 0.0318 6.96E+02 6.74E+01 0.5476 4 -1.80
15 3,181 1.0730989 2.4E-04 0.0230 3.61E+02 5.68E+01 1.1327 2 -1.44
20 4,301 1.0732776 7.2E-05 0.0167 2.32E+02 1.74E+01 2.3581 2 -3.99
25 5,761 1.0732992 5.1E-05 0.0130 1.62E+02 7.84E+00 4.1975 2 -1.13
30 8,810 1.0733370 1.6E-05 0.0093 9.02E+01 6.41E+00 7.7245 1 -2.73
35 13,013 1.0733444 9.2E-06 0.0080 5.15E+01 1.89E+00 12.9089 3 -1.43
40 17,268 1.0733489 5.0E-06 0.0059 3.68E+01 2.95E+00 19.9245 0 -2.18

Table 5.2.: Convergence of the function value I for adaptive mesh refinement for the ex-
ample from Figure 5.3
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level (uni) N rel. error time (s) level (adap) N rel. error time (s)
1 1,785 2.3E-03 0.07 5 1,053 2.1E-03 0.19
2 6,769 7.6E-04 0.26 9 1,946 7.6E-04 0.50
3 26,337 2.8E-04 1.15 14 3,154 4.9E-04 1.11
4 103,873 1.0E-04 5.30 18 3,917 9.9E-05 2.13
5 412,545 3.9E-05 23.49 27 7,987 1.9E-05 5.67
6 1,644,289 1.5E-05 98.68 33 12,483 1.0E-05 10.42
7 6,565,377 5.6E-06 400.82 39 17,217 5.6E-06 19.01
8 26,237,953 2.3E-06 1655.55 50 30,303 1.4E-06 46.38

Table 5.3.: Comarision of the convergnce for the uniform and adaptive mesh refinement
for the example from Figure 5.3. The levels for the adaptive mesh refinement
have been chosen such that the relative error was comparable to the error of
the uniform mesh refinement.

ities: If there are small changes in the shape parameters, the mesh may change discontinuously,

even the number of triangles and nodes changes. This discontinuity may result in jumps in the

displacement uh which can cause artificial, discretization induced, discontinuities in the per-

formance function and therefore problems for the optimization algorithm. Discontinuities may

cause the performance function value to increase even for small changes in the descent direction

indicated by the gradient. The optimization process may terminate because it cannot reduce

the performance function value by the line search in the search direction.

We show these discontinuities with an example. Consider a beam with dimensions 10 × 2 that

is clamped on the left end and loaded with an external force on the upper side. There is a hole

with radius 0.9 inside the beam and its center is located at xm(t) = 1 + 8t along the length

of the beam with the parameter t ∈ [0, 1]. With increasing t the hole moves from the left to

the right, compare Figure 5.4. The performance function I is the displacement evaluated in the

upper right corner, I = |u(x0)|2.

Figure 5.4.: Beam with a moving hole

Figure 5.5 shows the function value I(t) depending on the parameter t (i.e the position of the

hole) evaluated for the initial mesh, one and two uniform mesh refinements. On the initial mesh,

level 0, the perturbation is not only discontinuous but also seems to have periodic character which
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is due to the meshing. While the hole passes to the right, the mesh suddenly changes when more

or less triangles are needed in the thin regions under and above the hole. This process does not

need to be continuous and hence discontinuities can be caused in the performance function.

Due to the convergence lim
h→0

uh = u we expect that the discontinuities vanish when the mesh is

refined, which is also demonstrated in Figure 5.5.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.2  0.4  0.6  0.8  1

F
u
n
c
ti
o

n
 v

a
lu

e
 I

Hole position parameter t

Level 0
Level 1
Level 2

Figure 5.5.: Perfomance function depending on the parameter t for unifrom mesh refine-
ment

The adaptive mesh design yields similar results with fewer nodes. While two uniform mesh

refinements require about1 7956 dof, six adaptive mesh refinements give only about 922 dof and

an error of comparable magnitude, see Figure 5.6.

As mentioned earlier, computing the gradient OI with the help of finite differences has the

problem that the stepsize h has to be chosen. Too large stepsizes may be a poor approximation

of the derivative while too small stepsizes give rise to numerical problems like cancellation. We

demonstrate this with the bridge example in Figure 5.8 and a single component of the gradient.

We investigate the derivative with respect to the x2-coordinate of the left control point of the

1The node number changes slightly, depending on the position parameter t
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Figure 5.6.: Perfomance function depending on the parameter t for adaptive mesh refine-
ment

left shape segment (compare the diamond in Figure 5.7). Increasing this quantity will add a

small bulge on the left part of the upper edge. Table 5.4 shows the convergence of the derivative

for several stepsizes. The cancellation effects, that occur on the coarse mesh for small stepsizes,

can be reduced with a number of mesh refinements. This is of course a result of the artificial

discontinuities described in this section. Still, the DAM already provides a very reasonable

approximation of [OI]4 = −0.0824001979 on the coarse mesh, which clearly shows the benefits

of this method.

Figure 5.7.: Bézier control point of interest. We investigate the convergence of the finite
difference of the derivative with respect to its x2-component.
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h [OI]4 (lvl 0) [OI]4 (lvl 20 adap)
1.0E-01 -0.0824012980 -0.0824091573
1.0E-02 -0.0823717628 -0.0824092121
1.0E-03 -0.0821142862 -0.0824118467
1.0E-04 -0.0795394861 -0.0823893906
1.0E-05 -0.0537914824 -0.0822128801
1.0E-06 0.2036885523 -0.0847328643

Table 5.4.: Convergence of the forth component of OI with decreasing stepsize h, compared
on the coarse mesh and 20 adaptive mesh refinements

Problems with the multigrid preconditioner

While performing calculations with adaptive Baensch-Green refinement, the multigrid precon-

ditioner caused divergence in the PCG solver for several examples. This is most likely caused

by errors in the Implementation. However, even though considerable effort was spent, no such

errors could be found, and all comparisions with hand-calcultions for small test cases indicated

correctness. Usually, the Lamé problem does not require many smoothing steps in the multigrid.

Yet, increasing the number of smoothing steps can fix the problem and cause convergence again.

However, the divergence occurs usually only in a single level and after further adaptive refiment

steps, the usual fast convergence is observed. Also, no systematic pattern could be found, which

meshes are prone to this problem.

Table 5.5 shows the development in the PCG-solver for 10 adaptive refinement steps for an

example that occurred during the shape optimization process of the hook model in Figure 5.14.

The maximal number of iterations was set to 100 and two pre- and two post-smoothing steps

were applied in the multigrid preconditioner. Already the first refinement step causes a relatively

large number of iterations even though only two elements were refined. The next levels have

rather normal behavior until the fifth refinement step. The residual diverge on the next four

levels and on the ninth level the PCG finally converge. The usual fast convergence is observed

on the tenth level again.

5.2. Tests for Shape Optimization

We now demonstrate the Shape optimization and its results with a few examples. The opti-

mization itself is perfomed by the program DONLP2 from Peter Spellucci. It calls the FE-solver

FEINS for a given vector of shape parameters to compute the performance function value and

gradient.
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Level N |res| iter
0 330 1.2E-12 1
1 334 7.1E-08 30
2 345 5.1E-08 10
3 366 4.2E-08 9
4 386 5.3E-08 6
5 415 1.7E-02 100
6 451 3.9E-07 100
7 529 7.9E-05 100
8 602 1.1E-02 100
9 779 7.6E-08 46
10 918 4.2E-08 6

Table 5.5.: Convergence of the forth component of OI with decreasing stepsize h, compared
on the coarse mesh and 20 adaptive mesh refinements

Bridge model

Our first example is a beam of dimension 9 × 1 that is shown in Figure 5.8. The upper and

lower edge are described by three Bézier spline segments each and a constant load acts on the

upper edge. Figure 5.8 shows the initial configuration with two straight edges. We consider the

performance function

I(Ω) = α

∫
Ω

1
2
ε(u) : Cε(u) dx + α

∫
ΓN

g · u dx + β

∫
Ω

dx, (5.1)

i.e. the potential energy and area.

Figure 5.8.: Shape optimization: Initial configuration of the bridge model

For example, we choose the parameters α = 0.025 and β = 0.1 and perform the shape opti-

mization on an Intel(R) Core(TM) i7 CPU 920 with DONLP2 . Ten adaptive mesh refinements

are applied for each parameter vector solving the Lamé problem using a LAPACK direct solver

for banded matrices. The optimization process with 202 Lamé problems solved takes about 110

seconds and the result is illustrated in Figure 5.9.

The bulge of the bridge is remarkable as it is a widespread architecture feature especially for

older bridges or archways. It is also surprising because, due to the modeling that the load g does
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Figure 5.9.: Result of the shape optimization with α = 0.025 and β = 0.1. The red mesh
is the undeformed coarse mesh without any refinement. The blue mesh shows
the ten adaptive mesh refinements and the displacement (multiplied by ten for
better visibility) is added to it too. In particular, the corners, the interceptions
between Dirichlet and Neumann boundary condition, are more refined than
the rest of the otherwise evenly refined mesh.

not depend on the shape parameters, a longer upper edge also yields a larger total force. One

might expect the optimization to have a tendency to keep the length of the upper edge small

and hence also the total force. Yet, the total force acting in the result is about a fifth larger

than for the initial structure. The reason lies in the differences of material behavior for normal

and shear forces. For example, steel acts much stiffer when a normal force is applied, compared

to a shear force of the same magnitude. Therefore the potential energy is smaller for normal

forces than for shear forces. By redirecting the load as a normal force inside the structure, the

structure has a smaller potential energy and can even compensate a larger total force.

We now compare the uniform and adaptive mesh refinement and its influence on the shape

optimization. Tables 5.6 and 5.7 show the results of the shape optimization for several uni-

form and adaptive mesh refinements. The node number N refers to the node number of the
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final mesh of the optimal parameters and the errors eI and ep∗ show the relative error of the

perfomance function value and the optimal vector of parameters compared to a reference value

of I∗ = 1.2420313233 and its parameters that were obtained by a shape optimization using 30

adaptive mesh refinements. Besides the shrinking errors, the number of evaluations of I and

OI (that is solving a Lamé problem) decreases. This indicates that the discretized performance

function becomes smoother and the gradient is better approximated which accelerates the opti-

mization process. Discontinuities on coarse meshes (compare Figure 5.5 and 5.6) may cause the

optimization to terminate without satisfying the optimality conditions. The reasons for tertimi-

nation in the optimization solver DONLP2 is shown in the tables, where ’ok’ means that a local

minimum was found and the default tolerances of DONLP2 are fulfilled, and ’slow’ means ”‘that

the progress in the preformance function value is very slow or the problem is ill-conditioned”’.

This is most likely caused by insufficient accuracy or discontinuities in the performance function

or its gradient.

Level N I(p∗) eI ep∗ evals time (s) Stop
0 277 1.2357135013 5.1E-03 5.2E-02 183 24 slow
1 945 1.2403272793 1.4E-03 5.7E-02 197 50 slow
2 3,457 1.2401745251 1.5E-03 1.6E-02 178 254 slow
3 12,673 1.2415616948 3.8E-04 1.1E-02 135 444 slow
4 49,409 1.2418020303 1.8E-04 9.2E-03 100 1476 ok

Table 5.6.: Convergence of the function value I and p∗ for uniform mesh refinement for
the bridge model

Level N I(p∗) eI ep∗ evals time (s) Stop
0 277 1.2357135013 5.1E-03 5.2E-02 183 24 slow
5 508 1.2413346125 5.6E-04 8.9E-03 163 37 slow
10 1,350 1.2418196462 1.7E-04 9.8E-03 112 67 ok
15 2,552 1.2419641986 5.4E-05 4.3E-03 103 173 ok
20 3,990 1.2420299810 1.1E-06 2.8E-03 85 383 ok

Table 5.7.: Convergence of the function value I and p∗ for adaptive mesh refinement for
the bridge model

Beam with additional supporter

Next, we have a look on the convergence example in Figure 5.3 again. The upper edge and the

x1-coordinates of the Dirichlet boundary are chosen to be the only parts that are not affected by

the shape parameters. With the energy performance function (5.1), the shape optimization is

performed for α = 0.02, β = 0.1 and α = 0.01, β = 0.2 and its results are illustrated in Figures
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5.10, 5.11 and 5.12. The red mesh in the Figures is the undeformed coarse mesh where the blue

mesh shows the adaptive mesh refinements and the displacement (multiplied by ten for better

visibility) is added to it too.

(a) Shape
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(b) Meshing and deformation

Figure 5.10.: Initial shape of the beam example

(a) Optimized shape
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(b) Meshing and deformation

Figure 5.11.: Shape optimization of a beam with an additional supporter for α = 0.02,
β = 0.1.

Both meshes have still some similarities. At first, the supporter has an almost uniform thickness

and is inclined by an angle of roughly 50◦ to the horizontal axis. Larger angles would lengthen

the supporter too much and its deformation would increase, while smaller angles would cause

larger shear forces that cause larger deformations too. This optimal position of the supporter is

a compromise between the deformations caused by its lengthening and the shear forces. Thanks

to the supporter, a large amount of the load can be redirected as a normal force, causing a
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(a) Optimized shape
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(b) Meshing and deformation

Figure 5.12.: Shape optimization of a beam with an additional supporter for α = 0.01,
β = 0.2.

smaller potential energy. The upper beam is also strengthened on the left clamping, reducing

the shear forces.

Importance of the initial guess

Like in many nonlinear optimization problems, the initial guess may have a strong influence on

the process and the local minimum that is found. It is possible that certain shape parameters

result in invalid meshes, that is e.g. crossing edges. This can be avoided if certain subsets of the

set P of all vectors of shape parameters are declared not admissable for the optimization. Since

it is rather difficult to obtain equations that characterize if given shape parameter provides a

valid mesh, we utilize a penalization approach and assign it with the initial performance function

value to guarantee that infeasible solutions are not chosen as a local minimum. Still, it is possible

that the gradient points in a direction that leads to shape parameters that do not provide valid

meshes. In this case the optimization process gets stuck and terminates without satisfying the

optimality conditions.

We demonstrate the dependence on initial guess by the example of with a frustum in Figure

5.13 with the performance function

I(Ω) = α |u(x0)|2 + β

∫
Ω

dx.

First, we start with a frustum that has a wide base. The optimization terminates with the

result of a structure that has a thin middle part but still a very wide base. One might guess that

this wide base is unnecessary and only increases the performance function value of I = 0.71839.
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Indeed, a rectangle as initial guess yields an optimal shape that has a far smaller performance

function value of I = 0.24136.

(a) Initial frustum
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(b) Optimized shape to a). I = 0.71839

(c) Initial rectangle
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(d) Optimized shape to b). I = 0.24136

Figure 5.13.: Shape optimization of a frustum and its dependence on the initial guess.

Hook model

We consider a structure like a hook shown in Figure 5.14. It is clamped on the left side and a

constant load acts on the right upper edge. The two connecting edges are described with three

Bézier spline segments each and the performance function is the potential energy 5.1. First, we

compare the results depending on how the left clamped edge is constrained. Its x1-position is

constrained to stay at x1 = 0 in both cases, but the x2-position of the upper node is restricted

to stay lower than x2 = 1 in the first case and has no constraints in the second case. The

lower node is unconstrained in both cases. Figure 5.15 shows the results of the two different

models. The first case yields a result that consists of two parts: a thick horizontal beam that
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compensates shear forces and a very thin vertical beam where only normal forces act. In the

second case, it is possible that the clamped edge moves up, eliminating the vertical part. It

also has more options to shape the upper edge. The clustering of elements near the Neumann

boundary results from the optimization process. While the clamped edge slowly moves up, the

vertical part is still formed. This means that more shape segments are concentrated near the

Neumann boundary. Due to the meshing, each shape segment is refined a few times to ensure

that the edges approximate the shape segment well enough. If short shape segments cluster on

the right side, so do the elements. Besides that, the two horizontal beams seem to look alike.

Figure 5.14.: Shape optimization: Initial configuration of the hook model

The results also show that the optimal solution strongly depends on the acting force. We

demonstrate that with two more examples. We add an equal x1-component to the load q. In

one case, it points in the negative and in the other case it points in the positive x1-direction.

The results are illustrated in Figure 5.16. A thin beam is sufficient to compensate the normal

force in the first case but the shear force in the second case requires a rather thick structure.

We see that the results strongly depend on the load q. In order to obtain a rather robust

structure we consider the performance function

47



-1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

initial

deformed

(a) Clamped edge is constrained to stay lower
than x2 = 1
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(b) Clamped edge can move along the x2-axis

Figure 5.15.: Shape optimization of a hook and the dependence of the constraints.
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(a) External force points to the clamped edge.
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(b) External force is perpendicular to the line be-
tween clamped and loaded edge.

Figure 5.16.: Shape optimization of a hook and the dependence of the external force.

I = I1 + I2 with Ii = α

∫
Ω

1
2
ε(u(i)) : Cε(u(i)) dx + α

∫
ΓN

g · u(i) dx + β

∫
Ω

dx,

where u(1) and u(2) are the solution to two different external forces, g(1) acting in x1- and g(2)

x2-direction. The result can be seen in Figure 5.17.
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(a) Optimized shape (red)
in comparison to the initial
shape.

-1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

initial

deformed

(b) Deformation of the optimized shape.

Figure 5.17.: Shape optimization for the combined performance function I = I1 + I2,
considering two different external forces.
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A. Appendix

Derivation of the Derivative of the Residual R with respect to the node positions

∂

∂ [xj ]s

∫
Ω′

λ(O · u)(O · ϕr
i ) dx


=

∂

∂ [xj ]s

[∑
el

∑
k

wkλ |det(J)| ([u]x,x + [u]y,y)ϕi,r

]

=
∑
el

∑
k

wkλ

[
([u]x,x + [u]y,y)ϕi,r

∂ |det(J)|
∂ [xj ]s

+ |det(J)| ∂([u]x,x + [u]y,y)ϕi,r

∂ [xj ]s

]
=

∑
el

∑
k

wkλ

[
([u]x,x + [u]y,y)ϕi,r

∂ |det(J)|
∂ [xj ]s

+

|det(J)| {−([u]x,x + [u]y,y)ϕj,rϕi,s + (−ϕj,xux,s − ϕj,yuy,s)ϕi,r}] ,

∂

∂ [xj ]s

∫
Ω′

2µ

2∑
i,j=1

εij(u)εij(ϕr
i ) dx


=

∂

∂ [xj ]s

[∑
el

∑
k

2µwk |det(J)|
(

ur,rϕi,r +
1
2
(ux,y + uy,x)ϕi,r

)]

=
∑
el

∑
k

2µwk

[
∂ |det(J)|
∂ [xj ]s

(
ur,rϕi,r +

1
2
(ux,y + uy,x)ϕi,r

)
+ |det(J)| (−ur,rϕj,rϕi,s − ϕj,rur,sϕi,r

−1
2
(ux,y + uy,x)ϕj,rϕi,s −

1
2
(ϕj,yux,s + ϕj,xuy,s)ϕi,r)

]
,

∂

∂ [xj ]s

∫
Γ1

[g]r · ϕ
(1)
i ds


=

∂

∂ [xj ]s

[∑
bd

∑
k

wk ‖t(x̂k)‖2 [g]r ϕ̂i(x̂k)

]

=
∑
bd

∑
k

wk [g]r ϕ̂i(x̂k)
∂ ‖t(x̂k)‖2

∂ [xj ]s
.
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Integrating a(e, v) by parts

To derive (4.1) we need the formula for integration in higher dimensions and a generalization of

it,

∫
T

∂v

∂xi
f dx =

∫
∂T

v f [n]i ds−
∫
T

v
∂f

∂xi
dx,

∫
T

Ov · f dx =
∫
∂T

v n · f ds−
∫
T

v O · f dx,

where f, v ∈ H1(T ) , and n being the normal vector of the surface ∂T . With the strain being

ε(v) = 1/2 (Ov + OvT ) and the tension σ = Cε(uh) being symmetrical, we have

ε(v) : Cε(uh) = tr
(
1/2 (Ov + OvT )(Cε(uh))T

)
= 1/2 tr(OvCε(uh)) + 1/2 tr(OvT Cε(uh)).

We insert this in a(e, v) and obtain

a(e, v) =
∑
T ∈T


∫

∂T∩Γ

g · v ds−
∫
T

ε(v) : Cε(uh) dx


=

∑
T ∈T


∫

∂T∩Γ

g · v ds−
∫
T

1/2 tr(OvCε(uh)) + 1/2 tr(OvT Cε(uh)) dx

 .

We now examine the two parts of the integral over Ω. Applying (A.1) to the first part gives

1/2
∫
T

tr(OvCε(uh)) dx

= 1/2
∫
∂T

n · ε(uh) · v ds− 1/2
∫
T

O · Cε(uh) · v dx.

For the second part, applying (A.1) yields
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1/2
∫
T

tr(OvT Cε(uh)) dx

= 1/2
∫
T

∑
i

[OvT Cε(uh)]ii dx

= 1/2
∫
T

∑
i

∑
j

[OvT ]ij [Cε(uh)]ji dx

= 1/2
∑

i

∑
j

∫
T

∂[v]j
∂xi

[Cε(uh)]ji dx

= 1/2
∑

i

∑
j


∫
∂T

[v]j [Cε(uh)]jini ds−
∫
T

[v]j
∂[Cε(uh)]ji

∂xi
dx


= 1/2


∫
∂T

v · (n · Cε(uh)) ds−
∫
T

O · Cε(uh) · v dx

 .

Combining and inserting these equations gives the result (4.1),

a(e, v) =
∑
T∈T


∫

∂T∩Γ

g · v ds +
∫
T

O · Cε(uh) · v dx−
∫
∂T

n · Cε(uh) · v Sds

 .
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Conclusions

The application of the discrete adjoint method and the adaptive mesh refinement have been the

main topic of this work. The DAM allows an efficient omputation of the derivate of a given

performance function I with respect to parameters p, in case I depends on p indirectly. For

example, a quantity u(p) that directly depends on p though its evaluation is expensive. This

holds true for the Lamé problem where the potential energy depends on the displacement u which

is the solution of a partial differential equation. The advantages of the adaptive mesh refinement

have been shown regarding the discretization error, computational costs and accelerating the

optimization process.
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Theses (english)

1. In the course of the considered shape optimization of mechanical structures, there are to

contradicting goals: a high stiffness and a small material volume. We look for a compromise

between both quantities.

2. The linear elasticity theory is sufficient to model small deformations.

3. The displacements in the linear elasticity theory are described by the Lamé equation,

which is an elliptical partial differential equation of order two.

4. The Lamé equation can be solved approximately with the help of the finite element method.

5. To gain a suitable distribution of the mid nodes on a spline segment, it is necessary to

determine the spline parameter t for each node on the spline.

6. The uniform mesh refinement reduces the discretization error, though that results in very

large computational costs.

7. The adaptive mesh refinement can achieve comparable discretization errors with far smaller

computational costs. This is a huge advantage for the shape optimization which demands

a large number of evaluations of the performance function.

8. Since the number of unknowns increase moderately with the adaptive mesh refinement,

direct solvers are still practical.

9. The gradient of the performance function can be computed with the help of the discrete

adjoint method.

10. Artificial discontinuities due to the meshing are resolved by mesh refinements which ac-

celerates the optimization.

11. Normal forces cause smaller potential energy than shear forces. Due to this, the shape

optimization preferres structures where the external force is redirected as normal forces

inside the structure.

12. Even the fact that the adaptive mesh refinement is a discontinuous process, it weakens

discontinuities in the solution uh and thus in the performance function I.
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Thesen (deutsch)

1. Im Rahmen der hier betrachteten Formoptimierung für mechanische Bauteile gibt es

zwei sich widersprechende Ziele, eine hohe Steifigkeit und eine geringer Materialvolumen.

Gesucht ist ein Kompromiss zwischen beiden Größen.

2. Die lineare Elastizitätstheorie ist für die Modellierung von kleinen Deformationen ausre-

ichend.

3. Die Verschiebungen in der lineare Elastizitätstheorie werden durch die Lamé’sche Dif-

ferentialgleichung beschrieben, die eine elliptische partielle Differentialgleichung zweiter

Ordnung ist.

4. Mit Hilfe der Finiten-Elemente-Methode kann die Lamé’sche Gleichung näherungsweise

gelöst werden.

5. Um eine brauchbare Verteilung der Knoten auf den Spline-Segmenten zu erhalten, muss

der Spline-Parameter t für jeden Knoten auf dem Spline einzeln bestimmt werden.

6. Die uniforme Netzverfeinerung verringert den Diskretisierungsfehler, was allerdings sehr

hohe Rechenkosten zur Folge hat.

7. Die adaptive Netzverfeinerung kann vergleichbare Diskretisierungsfehler mit sehr viel gerin-

geren Rechenkosten erzielen. Dies ist von entscheidenden Vorteil für die Formoptimierung,

die viele Zielfuntionsauswertungen erfordert.

8. Da bei der adaptiven Netzverfeinerung die Zahl der Unbekannten moderat bleibt, sind

direkte Löser praktikabel.

9. Mit Hilfe der Methode der Diskreten Adjungierten kann der Gradient der Zielfunktion

bestimmt werden.

10. Künstliche Unstetigkeiten durch die Vernetzung werden durch Netzverfeinerungen beseit-

igt, was die Optimierung beschleunigt.

11. Die potentielle Energie ist bei Normalkräften sehr viel kleiner als bei Scherkräften. Dies

bewirkt, das die Formoptimierung Strukturen bevorzugt, wo die äußere Belastung als

Normalkraft umgeleitet wird.

12. Obwohl die adaptive Netzverfeinerung ein unstetiger Prozess ist, schwächt sie doch die

Unstetigkeiten in der Lösung uh und damit der Zielfunktion I.
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