55 research outputs found

    Altered Patterns of Fungal Keratitis at a London Ophthalmic Referral Hospital: An Eight-Year Retrospective Observational Study.

    Get PDF
    PURPOSE: In previous studies of fungal keratitis (FK) from temperate countries, yeasts were the predominant isolates, with ocular surface disease (OSD) being the leading risk factor. Since the 2005-2006 outbreak of contact lens (CL)-associated Fusarium keratitis, there may have been a rise in CL-associated filamentary FK in the United Kingdom. This retrospective case series investigated the patterns of FK from 2007 to 2014. We compared these to 1994-2006 data from the same hospital. DESIGN: Retrospective observational study. METHODS: All cases of FK presenting to Moorfields Eye Hospital between 2007 and 2014 were identified. The definition of FK was either a fungal organism isolated by culture or fungal structures identified by light microscopy (LM) of scrape material, histopathology, or in vivo corneal confocal microscopy (IVCM). Main outcome measure was cases of FK per year. RESULTS: A total of 112 patients had confirmed FK. Median age was 47.2 years. Between 2007 and 2014, there was an increase in annual numbers of FK (Poisson regression, P = .0001). FK was confirmed using various modalities: 79 (70.5%) by positive culture, 16 (14.3%) by LM, and 61 (54.5%) by IVCM. Seventy-eight patients (69.6%) were diagnosed with filamentary fungus alone, 28 (25%) with yeast alone, and 6 (5.4%) with mixed filamentary and yeast infections. This represents an increase in the proportion of filamentary fungal infections from the pre-2007 data. Filamentary fungal and yeast infections were associated with CL use and OSD, respectively. CONCLUSIONS: The number of FK cases has increased. This increase is due to CL-associated filamentary FK. Clinicians should be aware of these changes, which warrant epidemiologic investigations to identify modifiable risk factors

    A random forest approach to the detection of epistatic interactions in case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The key roles of epistatic interactions between multiple genetic variants in the pathogenesis of complex diseases notwithstanding, the detection of such interactions remains a great challenge in genome-wide association studies. Although some existing multi-locus approaches have shown their successes in small-scale case-control data, the "combination explosion" course prohibits their applications to genome-wide analysis. It is therefore indispensable to develop new methods that are able to reduce the search space for epistatic interactions from an astronomic number of all possible combinations of genetic variants to a manageable set of candidates.</p> <p>Results</p> <p>We studied case-control data from the viewpoint of binary classification. More precisely, we treated single nucleotide polymorphism (SNP) markers as categorical features and adopted the random forest to discriminate cases against controls. On the basis of the gini importance given by the random forest, we designed a sliding window sequential forward feature selection (SWSFS) algorithm to select a small set of candidate SNPs that could minimize the classification error and then statistically tested up to three-way interactions of the candidates. We compared this approach with three existing methods on three simulated disease models and showed that our approach is comparable to, sometimes more powerful than, the other methods. We applied our approach to a genome-wide case-control dataset for Age-related Macular Degeneration (AMD) and successfully identified two SNPs that were reported to be associated with this disease.</p> <p>Conclusion</p> <p>Besides existing pure statistical approaches, we demonstrated the feasibility of incorporating machine learning methods into genome-wide case-control studies. The gini importance offers yet another measure for the associations between SNPs and complex diseases, thereby complementing existing statistical measures to facilitate the identification of epistatic interactions and the understanding of epistasis in the pathogenesis of complex diseases.</p

    The QICKD study protocol: a cluster randomised trial to compare quality improvement interventions to lower systolic BP in chronic kidney disease (CKD) in primary care

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) is a relatively newly recognised but common long-term condition affecting 5 to 10% of the population. Effective management of CKD, with emphasis on strict blood pressure (BP) control, reduces cardiovascular risk and slows the progression of CKD. There is currently an unprecedented rise in referral to specialist renal services, which are often located in tertiary centres, inconvenient for patients, and wasteful of resources. National and international CKD guidelines include quality targets for primary care. However, there have been no rigorous evaluations of strategies to implement these guidelines. This study aims to test whether quality improvement interventions improve primary care management of elevated BP in CKD, reduce cardiovascular risk, and slow renal disease progression DESIGN: Cluster randomised controlled trial (CRT) METHODS: This three-armed CRT compares two well-established quality improvement interventions with usual practice. The two interventions comprise: provision of clinical practice guidelines with prompts and audit-based education. The study population will be all individuals with CKD from general practices in eight localities across England. Randomisation will take place at the level of the general practices. The intended sample (three arms of 25 practices) powers the study to detect a 3 mmHg difference in systolic BP between the different quality improvement interventions. An additional 10 practices per arm will receive a questionnaire to measure any change in confidence in managing CKD. Follow up will take place over two years. Outcomes will be measured using anonymised routinely collected data extracted from practice computer systems. Our primary outcome measure will be reduction of systolic BP in people with CKD and hypertension at two years. Secondary outcomes will include biomedical outcomes and markers of quality, including practitioner confidence in managing CKD. A small group of practices (n = 4) will take part in an in-depth process evaluation. We will use time series data to examine the natural history of CKD in the community. Finally, we will conduct an economic evaluation based on a comparison of the cost effectiveness of each intervention. CLINICAL TRIALS REGISTRATION: ISRCTN56023731. ClinicalTrials.gov identifier

    Epistatic Module Detection for Case-Control Studies: A Bayesian Model with a Gibbs Sampling Strategy

    Get PDF
    The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules. Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson's disease, the proposed method identifies seven suspicious loci that may contribute independently to the disease

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/
    corecore