57 research outputs found
Architectures of archaeal GINS complexes, essential DNA replication initiation factors
<p>Abstract</p> <p>Background</p> <p>In the early stage of eukaryotic DNA replication, the template DNA is unwound by the MCM helicase, which is activated by forming a complex with the Cdc45 and GINS proteins. The eukaryotic GINS forms a heterotetramer, comprising four types of subunits. On the other hand, the archaeal GINS appears to be either a tetramer formed by two types of subunits in a 2:2 ratio (α<sub>2</sub>β<sub>2</sub>) or a homotetramer of a single subunit (α<sub>4</sub>). Due to the low sequence similarity between the archaeal and eukaryotic GINS subunits, the atomic structures of the archaeal GINS complexes are attracting interest for comparisons of their subunit architectures and organization.</p> <p>Results</p> <p>We determined the crystal structure of the α<sub>2</sub>β<sub>2 </sub>GINS tetramer from <it>Thermococcus kodakaraensis </it>(<it>Tko</it>GINS), comprising Gins51 and Gins23, and compared it with the reported human GINS structures. The backbone structure of each subunit and the tetrameric assembly are similar to those of human GINS. However, the location of the C-terminal small domain of Gins51 is remarkably different between the archaeal and human GINS structures. In addition, <it>Tko</it>GINS exhibits different subunit contacts from those in human GINS, as a consequence of the different relative locations and orientations between the domains. Based on the GINS crystal structures, we built a homology model of the putative homotetrameric GINS from <it>Thermoplasma acidophilum </it>(<it>Tac</it>GINS). Importantly, we propose that a long insertion loop allows the differential positioning of the C-terminal domains and, as a consequence, exclusively leads to the formation of an asymmetric homotetramer rather than a symmetrical one.</p> <p>Conclusions</p> <p>The DNA metabolizing proteins from archaea are similar to those from eukaryotes, and the archaeal multi-subunit complexes are occasionally simplified versions of the eukaryotic ones. The overall similarity in the architectures between the archaeal and eukaryotic GINS complexes suggests that the GINS function, directed through interactions with other protein components, is basically conserved. On the other hand, the different subunit contacts, including the locations and contributions of the C-terminal domains to the tetramer formation, imply the possibility that the archaeal and eukaryotic GINS complexes contribute to DNA unwinding reactions by significantly different mechanisms in terms of the atomic details.</p
Diphenhydramine against cisplatin nephrotoxicity
Cisplatin is widely used as an anti-tumor drug for the treatment of solid tumors. Unfortunately, it causes nephrotoxicity as a critical side effect, limiting its use, given that no preventive drug against cisplatin-induced nephrotoxicity is currently available. This study identified that a previously developed drug, diphenhydramine, may provide a novel treatment for cisplatin-induced nephrotoxicity based on the results of the analysis of medical big data. We evaluated the actual efficacy of diphenhydramine via in vitro and in vivo experiments in a mouse model. Diphenhydramine inhibited cisplatin-induced cell death in renal proximal tubular cells. Mice administered cisplatin developed kidney injury with renal dysfunction (plasma creatinine: 0.43 ± 0.04 mg/dl vs 0.15 ± 0.01 mg/dl, p<0.01) and showed augmented oxidative stress, increased apoptosis, elevated inflammatory cytokines, and mitogen-activated protein kinases activation; however, most of these symptoms were suppressed by treatment with diphenhydramine. Further, the renal concentration of cisplatin was attenuated in diphenhydramine-treated mice (platinum content: 70.0 ± 3.3 µg/g dry kidney weight vs 53.4 ± 3.6 µg/g dry kidney weight, p<0.05). Importantly, diphenhydramine did not influence or interfere with the anti-tumor effect of cisplatin in any of the in vitro or in vivo experiments. Moreover, a retrospective clinical study of 1467 cancer patients treated with cisplatin showed that patients who had used diphenhydramine exhibited less acute kidney injury than patients who had not used diphenhydramine (6.1 % vs 22.4 %, p<0.05). Thus, diphenhydramine demonstrated efficacy as a novel preventive medicine against cisplatin-induced nephrotoxicity
Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases
Aims
The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them.
Methods and Results
We performed WES of 23 probands diagnosed with early-onset (&lt;65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency &lt; 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands.
Conclusions
Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD.
Translational Perspective
Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD
Multigrid Method With Adaptive IDR-Based Jacobi Smoother
Multigrid (MG) methods are known to be fast linear solvers for large-scale finite element analyses. The Gauss-Seidel method is usually adopted as the smoother for MG methods. However, recently, considerable attention has been focused on Induced Dimension Reduction (IDR)-based solvers because they are faster. In this paper, we investigate the convergence of IDR-based solvers and evaluate the performance of a MG method with an adaptive IDR-based Jacobi smoother. Numerical results show that this method has good convergence and good efficiency in parallel computations for finite element analysis of electromagnetic fields
A Proposal of Residual Reduction method with preconditioning based on IDR Theorem
Session 13International audienc
- …