249 research outputs found

    Report of the panel on international programs

    Get PDF
    The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations

    Genetically encoded betaxanthin-based small-molecular fluorescent reporter for mammalian cells

    Full text link
    We designed and engineered a dye production cassette encoding a heterologous pathway, including human tyrosine hydroxylase and Amanita muscaria 4,5-DOPA dioxygenase, for the biosynthesis of the betaxanthin family of plant and fungal pigments in mammalian cells. The system does not impair cell viability, and can be used as a non-protein reporter system to directly visualize the dynamics of gene expression by profiling absorbance or fluorescence in the supernatant of cell cultures, as well as for fluorescence labeling of individual cells. Pigment profiling can also be multiplexed with reporter proteins such as mCherry or the human model glycoprotein SEAP (secreted alkaline phosphatase). Furthermore, absorbance measurement with a smartphone camera using standard application software enables inexpensive, low-tech reporter quantification

    The MacBride Report in Twenty-first-century Capitalism, the Age of Social Media and the BRICS Countries

    Get PDF
    The MacBride Report was published in 1980. The report communicated the need for a New World Information and Communication Order (NWICO). With the breakdown of what used to be called “actually existing socialism“ in the East and with the rise of the neoliberal commodification of everything, a NWICO indeed emerged, but one that looked quite different from that the MacBride commission imagined. Thirty-five years later, it is time to ask how the situation of the media and communications in society has changed. This contribution asks the question of what we can make of the MacBride Report today in a media world and society that has seen the rise of an economically driven form of globalisation that also has impacts on the media, the expansion of the information economy with a new young precariat at its core, and the emergence of the World Wide Web and its change into a highly commercialised system, including the emergence of so-called “social media“ whose capital accumulation model is based on targeted advertising

    Ultrafast electronic read-out of diamond NV centers coupled to graphene

    Get PDF
    Nonradiative transfer processes are often regarded as loss channels for an optical emitter1, since they are inherently difficult to be experimentally accessed. Recently, it has been shown that emitters, such as fluorophores and nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy transfer to graphene. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene. Here, we demonstrate that the trans-ferred excitations can be read-out by detecting corresponding currents with picosecond time resolution. We electrically detect the spin of nitrogen vacancy centers in diamond electronically and con-trol the nonradiative transfer to graphene by electron spin resonance. Our results open the avenue for incorporating nitrogen vacancy centers as spin qubits into ultrafast electronic circuits and for harvesting non-radiative transfer processes electronically

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group

    Full text link
    Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits enables the execution of small scale but representative applications on quantum computers. In particular, the high-energy physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problems. This concerns, on the theoretical side, the exploration of models which are very hard or even impossible to address with classical techniques and, on the experimental side, the enormous data challenge of newly emerging experiments, such as the upgrade of the Large Hadron Collider. In this roadmap paper, led by CERN, DESY and IBM, we provide the status of high-energy physics quantum computations and give examples for theoretical and experimental target benchmark applications, which can be addressed in the near future. Having the IBM 100 x 100 challenge in mind, where possible, we also provide resource estimates for the examples given using error mitigated quantum computing
    corecore