12,937 research outputs found

    Improved Extractors for Recognizable and Algebraic Sources

    Get PDF

    Taylor series in Hermitean Clifford analysis

    Get PDF
    In this paper, we consider the Taylor decomposition for h-monogenic functions in Hermitean Clifford analysis. The latter is to be considered as a refinement of the classical orthogonal function theory, in which the structure group underlying the equations is reduced from so(2m) to the unitary Lie algebra u(m)

    Web-Based Roadway Geometry Design Software for Transportation Education

    Get PDF
    Traditionally, students use pencil and ruler to lay out lines and curves over contour maps for roadway geometry design. Numerous calculations of stopping sight distance, minimum turning radius, and curve alignments are required during the roadway design process in order to ensure safety, to minimize economic and environmental impacts, as well as to reduce construction costs. Iterative computations during the design process are usually performed manually by the students in order to meet any given design criteria and environmental constraints. The traditional design process of roadway geometry design is often cumbersome and time consuming. It limits students from taking a broader perspective on the overall roadway design process. An Internet-based roadway design tool (ROAD: Roadway Online Application for Design) was developed to enhance the learning experience for transportation engineering students. This tool allows students to efficiently design and to easily modify the roadway design with given economic and environmental parameters. A 3D roadway geometry model can be generated by the software at final design to allow students immerse themselves in the driver’s seat and drive through the designed roadway at maximum design speed. This roadway geometry design tool was deployed and tested in a civil engineering undergraduate class in spring 2006 at University of Minnesota, Department of Civil Engineering. Feedback was collected from instructors and students that will lead to additional enhancements of the roadway design software.

    Engaging Undergraduate Students in Transportation Studies through Simulating Transportation for Realistic Engineering Education and Training (STREET)

    Get PDF
    The practice of transportation engineering and planning has evolved substantially over the past several decades. A new paradigm for transportation engineering education is required to better engage students and deliver knowledge. Simulation tools have been used by transportation professionals to evaluate and analyze the potential impact of design or control strategy changes. Conveying complex transportation concepts can be effectively achieved by exploring them through simulation. Simulation is particularly valuable in transportation education because most transportation policies and strategies in the real world take years to implement with a prohibitively high cost. Transportation simulation allows learners to apply different control strategies in a risk-free environment and to expose themselves to transportation engineering methodologies that are currently in practice. Despite the advantages, simulation, however, has not been widely adopted in the education of transportation engineering. Using simulation in undergraduate transportation courses is sporadic and reported efforts have been focused on the upper-level technical elective courses. A suite of web-based simulation modules was developed and incorporated in the undergraduate transportation courses at University of Minnesota. The STREET (Simulating Transportation for Realistic Engineering Education and Training) research project was recently awarded by NSF (National Science Foundation) to develop web-based simulation modules to improve instruction in transportation engineering courses and evaluate their effectiveness. Our ultimate goal is to become the epicenter for developing simulation-based teaching materials, an active textbook, which offers an interactive learning environment to undergraduate students. With the hand-on nature of simulation, we hope to improve student understanding of critical concepts in transportation engineering and student motivation toward transportation engineering, and improve student retention in the field. We also would like to disseminate the results and teaching materials to other colleges to integrate the simulation modules in their curricula.Transportation Education and Training, Transportation Simulation, Roadway Geometry Design

    Plasma Processing of III-V Materials for Energy Efficient Electronics Applications

    Get PDF
    This paper reviews some recent activity at the James Watt Nanofabrication Centre in the University of Glasgow in the area of plasma processing for energy efficient compound semiconductor-based transistors. Atomic layer etching suitable for controllable recess etching in GaN power transistors will be discussed. In addition, plasma based surface passivation techniques will be reviewed for a variety of compound semiconductor materials ((100) and (110) oriented InGaAs and InGaSb)
    • …
    corecore