1,075 research outputs found

    Enacting Productive Dialogue: Addressing the Challenge that Non-Human Cognition Poses to Collaborations Between Enactivism and Heideggerian Phenomenology

    Get PDF
    This chapter uses one particular proposal for interdisciplinary collaboration – in this case, between early Heideggerian phenomenology and enactivist cognitive science – as an example of how such partnerships may confront and negotiate tensions between the perspectives they bring together. The discussion begins by summarising some of the intersections that render Heideggerian and enactivist thought promising interlocutors for each other. It then moves on to explore how Heideggerian enactivism could respond to the challenge of reconciling the significant differences in the ways that each discourse seeks to apply the structures it claims to uncover

    Symmetry Breaking of Relativistic Multiconfiguration Methods in the Nonrelativistic Limit

    Full text link
    The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.Comment: Final version, to appear in Nonlinearity. Nonlinearity (2010) in pres

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations

    Get PDF
    This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given

    Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen

    Full text link
    We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic states used for the calculations are obtained by making use of the finite basis set method and expressed in terms of B-splines and B-polynomials. We pay particular attention to the effects that arise from higher (non-dipole) terms in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons, while it is symmetric with respect to the scattering angle Ξ\theta=90∘^\circ within the electric dipole approximation, becomes asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy range 0.5 to 10 keV. When possible, results are compared with previous calculations.Comment: 8 pages, 5 figure

    Spin-other-orbit operator in the tensorial form of second quantization

    Full text link
    The tensorial form of the spin-other-orbit interaction operator in the formalism of second quantization is presented. Such an expression is needed to calculate both diagonal and off-diagonal matrix elements according to an approach, based on a combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique. One of the basic features of this approach is the use of tables of standard quantities, without which the process of obtaining matrix elements of spin-other-orbit interaction operator between any electron configurations is much more complicated. Some special cases are shown for which the tensorial structure of the spin-other-orbit interaction operator reduces to an unusually simple form

    An efficient approach for spin-angular integrations in atomic structure calculations

    Full text link
    A general method is described for finding algebraic expressions for matrix elements of any one- and two-particle operator for an arbitrary number of subshells in an atomic configuration, requiring neither coefficients of fractional parentage nor unit tensors. It is based on the combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique. The latter allows us to calculate graphically the irreducible tensorial products of the second quantization operators and their commutators, and to formulate additional rules for operations with diagrams. The additional rules allow us to find graphically the normal form of the complicated tensorial products of the operators. All matrix elements (diagonal and non-diagonal with respect to configurations) differ only by the values of the projections of the quasispin momenta of separate shells and are expressed in terms of completely reduced matrix elements (in all three spaces) of the second quantization operators. As a result, it allows us to use standard quantities uniformly for both diagona and off-diagonal matrix elements

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
    • 

    corecore