A general method is described for finding algebraic expressions for matrix
elements of any one- and two-particle operator for an arbitrary number of
subshells in an atomic configuration, requiring neither coefficients of
fractional parentage nor unit tensors. It is based on the combination of second
quantization in the coupled tensorial form, angular momentum theory in three
spaces (orbital, spin and quasispin), and a generalized graphical technique.
The latter allows us to calculate graphically the irreducible tensorial
products of the second quantization operators and their commutators, and to
formulate additional rules for operations with diagrams. The additional rules
allow us to find graphically the normal form of the complicated tensorial
products of the operators. All matrix elements (diagonal and non-diagonal with
respect to configurations) differ only by the values of the projections of the
quasispin momenta of separate shells and are expressed in terms of completely
reduced matrix elements (in all three spaces) of the second quantization
operators. As a result, it allows us to use standard quantities uniformly for
both diagona and off-diagonal matrix elements