10 research outputs found
Lipopolysaccharide-binding protein and future Parkinson's disease risk: a European prospective cohort
INTRODUCTION: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals
The effect of having Christmas dinner with in-laws on gut microbiota composition
The Christmas season can have a major impact on human health. Especially increased contact with in-laws during the holiday season is an important environmental factor known to affect both physical and mental health (Mirza et al., 2004). However, the mechanism through which in-laws influence host health is not yet understood. Emerging evidence has identified the intestinal microbiota as an important mediator for both physical and mental health. Here, we performed a prospective observational study to examine the impact of contact with in-laws on the gut microbiome during the Christmas season. We conducted 16S ribosomal DNA sequencing of fecal samples collected at two separate time points (December 23rd and December 27th 2016) from a group of 28 healthy volunteers celebrating Christmas. To discriminate between participants who visited their own family versus their in-laws, we built a multivariate statistical model that identified microbial biomarker species. We observed two distinct microbial-biomarker signatures discriminating the participants that visited their in-laws versus their own family over the Christmas season. We identified seven bacterial species whose relative-change profile differed significantly among these two groups. In participants visiting in-laws, there was a significant decrease in all Ruminococcus species, known to be associated with psychological stress and depression. A larger randomized controlled study is needed to reproduce these findings before we can recognize in-laws as a potential risk factor for the gut microbiota composition and subsequently host health
Recommended from our members
Trichloroethylene: An Invisible Cause of Parkinson’s Disease?
The etiologies of Parkinson's disease (PD) remain unclear. Some, such as certain genetic mutations and head trauma, are widely known or easily identified. However, these causes or risk factors do not account for the majority of cases. Other, less visible factors must be at play. Among these is a widely used industrial solvent and common environmental contaminant little recognized for its likely role in PD: trichloroethylene (TCE). TCE is a simple, six-atom molecule that can decaffeinate coffee, degrease metal parts, and dry clean clothes. The colorless chemical was first linked to parkinsonism in 1969. Since then, four case studies involving eight individuals have linked occupational exposure to TCE to PD. In addition, a small epidemiological study found that occupational or hobby exposure to the solvent was associated with a 500% increased risk of developing PD. In multiple animal studies, the chemical reproduces the pathological features of PD.Exposure is not confined to those who work with the chemical. TCE pollutes outdoor air, taints groundwater, and contaminates indoor air. The molecule, like radon, evaporates from underlying soil and groundwater and enters homes, workplaces, or schools, often undetected. Despite widespread contamination and increasing industrial, commercial, and military use, clinical investigations of TCE and PD have been limited. Here, through a literature review and seven illustrative cases, we postulate that this ubiquitous chemical is contributing to the global rise of PD and that TCE is one of its invisible and highly preventable causes. Further research is now necessary to examine this hypothesis
Lipopolysaccharide-binding protein and future Parkinson’s disease risk: a European prospective cohort
Abstract Introduction Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson’s disease (PD) in small-scale retrospective case–control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case–control study within a large European prospective cohort. Methods A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. Results Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1–41.0) vs. 24.7 (16.6–38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98–2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40–5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09–2.18). Conclusion The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals