143 research outputs found

    Evaluation of Long-Term Impacts in LCA

    Get PDF
    When looking at a product's life cycle, emissions and resource uses, as well as the resulting impacts, usually occur at different points in time. For instance, construction materials are often ‘stored' in buildings for many decades before they are recycled or disposed of. The goal of the LCA Discussion Forum 22 was to present and discuss arguments pro and contra a temporally differentiated weighting of impacts. The discussion forum started with three talks that illustrated the importance of temporal aspects in LCI and LCIA. The following two presentations discussed the economical principles of discounting, the adequacy of this concept within LCA, and the ethical questions involved. After one further short presentation, three groups were formed that discussed questions about temporally-differentiated weighting, and consequences for LCI as well as LCIA (damage assessment and final weighting). The discussion forum ended with the following conclusions: (a) long-term impacts should be considered in LCA, and (b) long-term emissions should be inventoried separately from short-term emissions. There was no consensus on whether short-term and long-term impacts should be weighted equally. Some prefer to weigh short-term emissions higher, because they are considered to be closer. Consistent and approved forecasts should be used when considering future changes in environmental conditions in LCI and LCI

    (Net-) zero-emission buildings: a typology of terms and definitions

    Get PDF
    Several different definitions of ‘net-zero’ or ‘climate-neutral’ buildings have arisen and are causing confusion. Different approaches quantify the greenhouse gas (GHG) emissions of buildings over their life-cycle. A typology is proposed based on distinctions between absolute and net-zero-emission buildings in relation to operational and full life-cycle approaches. Besides the absolute zero-emission approach, three different net-zero-emission approaches are: (1) a net-balance approach, which includes credits caused by potentially avoided emissions beyond the system boundary provided by exported energy; (2) an offsetting approach, based on the purchase of CO2 certificates; and (3) a technical approach, based on negative-emission technologies. The declaration of the approach chosen will provide clarity when discussing (net/absolute)-zero emission or climate-neutral buildings

    Einstein'ssons for energy accounting in LCA

    Get PDF
    The role and meaning of accounting for energy, including feedstock energy, is reviewed in connection to Einstein's special theory of relativity. It is argued that there is only one unambiguous interpretation of the term energy-content: The one that corresponds tome The implications for life cycle inventories is that all discussions concerning upper heating value, lower heating value, feedstock energy, etc. are pointless as long as the motivation for choosing one or the other is not specified in relation to the safeguard subjects defined for a particular analysis (LCA or energy analysis). The subjective aspects of energy accounting schemes, even though based on mere thermodynamics, are highlighted. In inventory analysis, it is recommended that energy carriers should be accounted separately and in mass terms. For illustrative purposes, energy statistics and energy assessment are discussed in view of the safeguard subjects underlying the accounting procedures. Based on a set of theses, one possible energy accounting scheme as an indicator of the "consumption of non-renewable energy resources” within the impact assessment of LCA is sketched. It is emphasised that energy accounting schemes do not reflect environmental impacts caused by the energy sources, and the characteristics of the indicator "consumption of non-renewable energy resources” introduced here are highlighte

    Life Cycle Assessment for Emerging Technologies: Case Studies for Photovoltaic and Wind Power (11 pp)

    Get PDF
    Goal, Scope and Background: This paper describes the modelling of two emerging electricity systems based on renewable energy: photovoltaic (PV) and wind power. The paper shows the approach used in the ecoinvent database for multi-output processes. Methods: Twelve different, grid-connected photovoltaic systems were studied for the situation in Switzerland. They are manufactured as panels or laminates, from mono- or polycrystalline silicon, installed on facades, slanted or flat roofs, and have a 3kWp capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, supporting structure and dismantling. The assumed operational lifetime is 30 years. Country-specific electricity mixes have been considered in the LCI in order to reflect the present situation for individual production stages. The assessment of wind power includes four different wind turbines with power rates between 30 kW and 800 kW operating in Switzerland and two wind turbines assumed representative for European conditions 800 kW onshore and 2 MW offshore. The inventory takes into account the construction of the plants including the connection to the electric grid and the actual wind conditions at each site in Switzerland. Average European capacity factors have been assumed for the European plants. Eventually necessary backup electricity systems are not included in the analysis. Results and Discussion: The life cycle inventory analysis for photovoltaic power shows that each production stage may be important for specific elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g. process emissions of NOx from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The allocation of the inventory for silicon purification to different products is discussed here to illustrate how allocation has been implemented in ecoinvent. Material consumption for the main parts of the wind turbines gives the dominant contributions to the cumulative results for electricity production. The complex installation of offshore turbines, with high requirements of concrete for the foundation and the assumption of a shorter lifetime compared to onshore foundations, compensate the advantage of increased offshore wind speeds. Conclusion: The life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology helps to assess the relative influence of technology improvements for some processes in the near future (2005-2010). The differences for environmental burdens of wind power basically depend upon the capacity factor of the plants, the lifetime of the infrastructure, and the rated power. The higher these factors, the more reduced the environmental burdens are. Thus, both systems are quite dependent on meteorological conditions and the materials used for the infrastructure. Recommendation and Perspective: Many production processes for photovoltaic power are still under development. Future updates of the LCI should verify the energy uses and emissions with available data from industrial processes in operation. For the modelling of a specific power plant or power plant mixes outside of Switzerland, one has to consider the annual yield (kWh/kWp) and if possible also the size of the plant. Considering the steady growth of the size of wind turbines in Europe, the development of new designs, and the exploitation of offshore location with deeper waters than analysed in this study, the inventory for wind power plants may need to be updated in the futur

    Applying cumulative exergy demand (CExD) indicators to the ecoinvent database

    Get PDF
    Goal, Scope and Background: Exergy has been put forward as an indicator for the energetic quality of resources. The exergy of a resource accounts for the minimal work necessary to form the resource or for the maximally obtainable amount of work when bringing the resource's components to their most common state in the natural environment. Exergy measures are traditionally applied to assess energy efficiency, regarding the exergy losses in a process system. However, the measure can be utilised as an indicator of resource quality demand when considering the specific resources that contain the exergy. Such an exergy measure indicates the required resources and assesses the total exergy removal from nature in order to provide a product, process or service. In the current work, the exergy concept is combined with a large number of life cycle inventory datasets available with ecoinvent data v1.2. The goal was, first, to provide an additional impact category indicator to Life-Cycle Assessment practitioners. Second, this work aims at making a large source of exergy scores available to scientific communities that apply exergy as a primary indicator for energy efficiency and resource quality demand. Methods: The indicator Cumulative Exergy Demand (CExD) is introduced to depict total exergy removal from nature to provide a product, summing up the exergy of all resources required. CExD assesses the quality of energy demand and includes the exergy of energy carriers as well as of non-energetic materials. In the current paper, the exergy concept was applied to the resources contained in the ecoinvent database, considering chemical, kinetic, hydro-potential, nuclear, solar-radiative and thermal exergies. The impact category indicator is grouped into the eight resource categories fossil, nuclear, hydropower, biomass, other renewables, water, minerals, and metals. Exergy characterization factors for 112 different resources were included in the calculations. Results: CExD was calculated for 2630 ecoinvent product and process systems. The results are presented as average values and for 26 specific groups containing 1197 products, processes and infrastructure units. Depending on the process/product group considered, energetic resources make up between 9% and 100% of the total CExD, with an average contribution of 88%. The exergy of water contributes on the average to 8% the total exergy demand, but to more than 90% in specific process groups. The average contribution of minerals and metal ores is 4%, but shows an average value as high as 38% and 13%, in metallic products and in building materials, respectively. Looking at individual processes, the contribution of the resource categories varies substantially from these average product group values. In comparison to Cumulative Energy Demand (CED) and the abiotic-resource-depletion category of CML 2001 (CML'01), non-energetic resources tend to be weighted more strongly by the CExD method. Discussion: Energy and matter used in a society are not destroyed but only transformed. What is consumed and eventually depleted is usable energy and usable matter. Exergy is a measure of such useful energy. Therefore, CExD is a suitable energy based indicator for the quality of resources that are removed from nature. Similar to CED, CExD assesses energy use, but regards the quality of the energy and incorporates non-energetic materials like minerals and metals. However, it can be observed for non-renewable energy-intensive products that CExD is very similar to CED. Since CExD considers energetic and non-energetic resources on the basis of exhaustible exergy, the measure is comparable to resource indicators like the resource use category of Eco-indicator 99 and the resource depletion category of CML 2001. An advantage of CExD in comparison to these methods is that exergy is an inherent property of the resource. Therefore less assumptions and subjective choices need to be made in setting up characterization factors. However, CExD does not coversocietal demand (distinguishing between basic demand and luxury), availability or scarcity of the resource. As a consequence of the different weighting approach, CExD may differ considerably from the resource category indicators in Eco-indicator 99 and CML 2001. Conclusions: The current work shows that the exergy concept can be operationalised in product life cycle assessments. CExD is a suitable indicator to assess energy and resource demand. Due to the consideration of the quality of energy and the integration of non-energetic resources, CExD is a more comprehensive indicator than the widely used CED. All of the eight CExD categories proposed are significant contributors to Cumulative Exergy Demand in at least one of the product groups analysed. In product or service assessments and comparative assertions, a careful and concious selection of the appropriate CExD-categories is required based on the energy and resource quality demand concept to be expressed by CExD. Recommendations and Perspectives: A differentiation between the exergy of fossil, nuclear, hydro-potential, biomass, other renewables, water and mineral/metal resources is recommended in order to obtain a more detailed picture of resource quality demand and to recognise trade-offs between resource use, for instance energetic and non-energetic raw materials, or nonrenewable and renewable energie

    The MIIM LCA PH.D. club: Presentation and introduction

    Get PDF
    During 1998, the number of completed Ph.D.s on Life Cycle Assessment (LCA) seemed to be larger than any previous year. In order to mark this achievement, a special series is being published in the International Journal of LCA. In this introductory paper, the Class of MUM outline the results of their research work over the last few years. A number of common points and tendencies have emerged through this work. First of all, the scope-dependency of LCA models: some of us have discerned in particular the need to distinguish between descriptive and change-oriented LCAs. Secondly, a number of the theses focus on the interaction between LCA and decision-making. Thirdly, the benefits of pluralism in impact assessment and allocation have been advocated in some of the theses. Finally, it may be noted that in these theses structuring the management of controversial issues seems to be preferred to eliminating such issues by a process of harmonisation. Future papers will map out the intellectual journeys undertaken in the development of these theses and discuss key findings in more detai

    Sustainable and healthy diets: trade-offs and synergies : final scientific report

    Get PDF
    This project aimed at analysing trade-offs and synergies between healthy nutrition and sustainable food systems. First, we identified nutritional patters of the Swiss population based on representative consumption data. The health impacts of these nutritional patterns were then analysed based on a review of the scientific literature on health impacts of food commodities and diets and by calculating the Alternate Healthy Eating Index (AHEI), the Mediterranean Diet Score (MDS) and Disability Adjusted Life Years (DALYs) of the nutritional patterns. Second, we comprehensively analysed health, environmental, social and economic impacts and related trade-offs and synergies for a number of future scenarios of Swiss agricultural production and food consumption. For this, we used a modelling approach, linking three different models: a global mass flow model, a system dynamics model and an environmentally extended input-output model. We modelled ten different scenarios for the Swiss Food Sector in 2050. These scenarios were either developed in a participatory process during a series of interviews and group discussions with different groups of stakeholders or optimised environmental impacts while at the same time complying with different nutritional and agronomic restrictions. Three main scenarios were analysed with all three models in detail. Among these main scenarios was the SwissFoodPyramid2050 Scenario, which assumes a widespread implementation of the nutritional recommendations according to the Swiss Food Pyramid. The FeedNoFood2050 Scenario assumes an improved use of agricultural land by feeding only grass and by-products to livestock, which was not competing with direct human nutrition, i.e. did not require arable land (neither in Switzerland nor abroad). The third scenario was a reference scenario, which assumes no changes in diets until 2050 and which was used to compare the two alternative scenarios. The other scenarios were targeted at specific questions such as minimizing greenhouse gases. Our results illustrate two visions of how healthy diets and sustainable food systems could look like. Both the SwissFoodPyramid2050 and the FeedNoFood2005 scenarios would require similar dietary changes, such as a reduction of meat consumption and an increase of consumption of pulses. However, there are also fundamental differences between the diets in the two alternative scenarios, e.g. regarding the type of meat consumed. These differences can be interpreted as trade-offs which result from agronomic boundary conditions such as the coupled production of milk and meat, the availability of natural resources, such as grassland and co-products of food processing and health aspects of Swiss diets. Of primary importance in this respect was the use of permanent grasslands and the co-production of veal and beef with dairy production due to environmental reasons and reasons for optimally utilizing available resources. This means, if permanent grassland should be maintained as an ecosystem, dairy production would provide the basis for animal proteins. Thus, while in the FeedNoFood2050 Scenario veal and rather low-quality beef from dairy cows is consumed instead of meat from monogastrics, the SwissFoodPyramid2050 Scenario would result in a higher amount of meat from monogastrics. Our results imply that there is a lack of a comprehensive food systems view in the current discussion on healthy and sustainable diets. Stronger coherence between health, food and agricultural policy is needed to account for systemic boundary conditions and thus to allow for minimising trade-offs and maximise synergies. Current agricultural policies fail to address the health perspective. Financial support for meat and sugar producers, which lead to lower prices for those products and ultimately to a higher consumption than without these policies, are two obvious examples. Yet, comprehensive visions such as the SwissFoodPyramid scenario, the FeedNoFood Scenario or optimised scenarios would require an even more complex policy mix of incentives, regulations and information campaigns. This would probably need an adaptation of the current institutional setting and division of competences between the Federal Offices for Agriculture (FOAG) and for the Environment (FOEN), the State Secretariat for Economic Affairs (SECO) and the Federal Food Safety and Veterinary Office (FSVO). A commonly shared vision, including specific goals with respect to how the Swiss food system should look like, is urgently needed. Developing such a vision needs to involve all operators and stakeholders of the food system, as our results imply that more sustainable and healthy diets do not necessarily go along with financial benefits of both producers and consumers. These trade-offs and the knowledge of behavioural economics need to be considered for designing settings which create mutual benefits for operators in the food sector. For instance, neither the majority of consumers, food industry nor agricultural producers can be expected to respond altruistically as an entire sector in the long term. Therefore, policy needs to set financial incentives for internalising environmental and social externalities in order to push and pull the food system towards sustainability. Furthermore, it is crucial to account for agronomic boundary conditions and systemic aspects, such as the role of ruminants in utilizing grasslands and the unavoidable link of milk and meat production
    • 

    corecore