2,182 research outputs found

    Role of Li_2B_(12)H_(12) for the Formation and Decomposition of LiBH_4

    Get PDF
    By in situ X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy, the role of Li_2B_(12)H_(12) for the sorption of LiBH_4 is analyzed. We demonstrate that Li_2B_(12)H_(12) and an amorphous Li_2B_(10)H_(10) phase are formed by the reaction of LiBH_4 with diborane (B_2H_6) at 200 °C. Based on our present results, we propose that the Li -2B - (12)H_(12) formation in the desorption of LiBH_4 can be explained as a result of reaction of diborane and LiBH_4. This reaction of the borohydride with diborane may also be observed for other borohydrides, where B_(12)H_(12) phases are found during decomposition

    Long-Term Trends in Chesapeake Bay Remote Sensing Reflectance: Implications for Water Clarity

    Get PDF
    While ecosystem health is improving in many estuaries worldwide following nutrient reductions, inconsistent trends in water clarity often remain. The Chesapeake Bay, a eutrophic estuary with a highly populated watershed, is a crucial testbed for these concerns. Improved efforts are needed to understand why some measurements of downstream estuarine water clarity appear to be uncorrelated with watershed management actions, and multiple metrics of clarity are needed to address this issue. To complement in situ measurements, satellite remote sensing provides an additional tool with which to assess long-term change in water clarity. In this study, remote sensing reflectance (Rrs) from the Moderate Resolution Imaging Spectroradiometer on satellite Aqua was evaluated from 2003 to 2020 at multiple wavelengths for surface waters of the Chesapeake Bay. Trends show an overall long-term decrease in Rrs in the upper estuary for all wavelengths, yet an increase in Rrs in the lower estuary for green wavelengths. Trends in band ratios show long-term decreasing red-to-green and red-to-blue ratios, yet long-term increasing green-to-blue ratios. Seasonally, trends in band ratios were relatively consistent throughout the year and along-estuary, whereas single band reflectance trends varied seasonally and along-estuary. In the lower Bay, Septembers showed the strongest decreasing trends in red reflectance, while early spring and summer had the most pronounced increasing trends in green reflectance. These trends suggest that the system has experienced a long-term reduction in suspended solids concentration and light attenuation without a systematic reduction in chlorophyll-a concentration

    Effects of reduced shoreline erosion on Chesapeake Bay water clarity

    Get PDF
    Shoreline erosion supplies sediments to estuaries and coastal waters, influencing water clarity and primary production. Globally, shoreline erosion sediment inputs are changing with anthropogenic alteration of coastlines in populated regions. Chesapeake Bay, a prime example of such a system where shoreline erosion accounts for a large proportion of sediments entering the estuary, serves here as a case study for investigating the effects of changing sediment inputs on water clarity. Long-term increases in shoreline armoring have contributed to decreased erosional sediment inputs to the estuary, changing the composition of suspended particles in surface waters. This study examined the impact of shoreline erosion on water clarity using a coupled hydrodynamic-biogeochemical model. Experiments were conducted to simulate realistic shoreline conditions representative of the early 2000s, increased shoreline erosion, and highly armored shorelines. Together, reduced shoreline erosion and the corresponding reduced rates of resuspension result in decreased concentrations of inorganic particles, improving water clarity particularly in the lower Bay and in dry years where/when riverine sediment influence is low. This clarity improvement relaxed light limitation, which increased organic matter production. Differences between the two extreme experiments revealed that in the mid-estuary in February-April, surface inorganic suspended sediment concentrations decreased 3-7 mg L-1, while organic suspended solids increased 1-3 mg L-1. The resulting increase in the organic-to-inorganic ratio often had opposite effects on clarity according to different metrics, improving clarity in mid-Bay central channel waters in terms of light attenuation depth, but simultaneously degrading clarity in terms of Secchi depth because the resulting increase in organic suspended solids decreased the water’s transparency. This incongruous water clarity effect, the spatial extent of which is defined here as an Organic Fog Zone, was present in February-April in all years studied, but occurred farther south in wet years

    Metastability-Containing Circuits

    No full text
    Communication across unsynchronized clock domains is inherently vulnerable to metastable upsets; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Traditionally, a possibly metastable input is stored in synchronizers, decreasing the odds of maintained metastability over time. This approach costs time, and does not guarantee success. We propose a fundamentally different approach: It is possible to \emph{contain} metastability by logical masking, so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. We present a synchronizer-free, fault-tolerant clock synchronization algorithm as application, synchronizing clock domains and thus enabling metastability-free communication. At the heart of our approach lies a model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results while at the same time reproducing established impossibility results regarding avoidance, resolution, and detection of metastability. Furthermore, we fully classify which functions can be computed by synchronous circuits with standard registers, and show that masking registers are computationally strictly more powerful

    Analyzing Laminated Structures from Fibre-Reinforced Composite Material: An Assessment

    Get PDF
    In the open literature there is available a tremendous number of models and methods for analyzing laminated structures. With respect to the assumptions across the laminate thickness, theories with Cz1-continuous functions are to be distinguished from layer-wise approaches, where for the latter the functional degrees of freedom can be dependent or independent of the number of layers. Transverse shear and normal stresses are more accurate when obtained by locally evaluating the equilibrium conditions. Guidelines are needed as to which model is suitable for what task. Especially for layer-wise models a fair judgment is missing. To ease up this deficiency two simple layer-wise models are evaluated and compared with models based on Cz1-continuous functions. It turns out that for standard application the FSDT with improved transverse shear stiffness is a good choice with respect to efficiency

    The Continuous 1.5{D} Terrain Guarding Problem: {D}iscretization, Optimal Solutions, and {PTAS}

    Get PDF
    In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP) we are given an x-monotone chain of line segments in the plain (the terrain TT), and ask for the minimum number of guards (located anywhere on TT) required to guard all of TT. We construct guard candidate and witness sets G,W⊂TG, W \subset T of polynomial size, such that any feasible (optimal) guard cover G′⊆GG' \subseteq G for WW is also feasible (optimal) for the continuous TGP. This discretization allows us to: (1) settle NP-completeness for the continuous TGP; (2) provide a Polynomial Time Approximation Scheme (PTAS) for the continuous TGP using the existing PTAS for the discrete TGP by Gibson et al.; (3) formulate the continuous TGP as an Integer Linear Program (IP). Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to 1000000 vertices within minutes on a standard desktop computer

    Clarifying water clarity: A call to use metrics best suited to corresponding research and management goals in aquatic ecosystems

    Get PDF
    Water clarity is a subjective term and can be measured multiple ways. Different metrics such as light attenuation and Secchi depth vary in effectiveness depending on the research or management application. In this essay, we argue that different questions merit different water clarity metrics. In coastal and inland waters, empirical relationships to estimate light attenuation can yield clarity estimates that either under- or overestimate the underwater light climate for restoration goals, such as potential habitat available for submerged aquatic vegetation. Best practices in reporting water clarity measurements include regionally specific, temporally representative calibrations and communicating the metric that was actually measured. An intentional choice of the water clarity metric best suited to the research or management question yields the most useful results

    An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

    Get PDF
    Nearly half of the earth\u27s photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ C-14 measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. On average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models

    The adjoint problem in the presence of a deformed surface: the example of the Rosensweig instability on magnetic fluids

    Full text link
    The Rosensweig instability is the phenomenon that above a certain threshold of a vertical magnetic field peaks appear on the free surface of a horizontal layer of magnetic fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of the Rosensweig instability are entirely triggered by the properties of a deformed and a priori unknown surface. The resulting problems in defining an adjoint operator for such nonlinearities are illustrated. The implications concerning amplitude equations for pattern forming systems with a deformed surface are discussed.Comment: 11 pages, 1 figur
    • …
    corecore