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ESSAY

Clarifying water clarity: A call to use metrics best suited to
corresponding research and management goals in aquatic ecosystems

Jessica S. Turner®,79* Kelsey A. Fall? Carl T. Friedrichs’

Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia; U.S. Army Engineer Research and

Development Center, Vicksburg, Mississippi

Scientific Significance Statement

Water clarity is a subjective term and can be measured multiple ways. Different metrics such as light attenuation and Secchi
depth vary in effectiveness depending on the research or management application. In this essay, we argue that different ques-
tions merit different water clarity metrics. In coastal and inland waters, empirical relationships to estimate light attenuation
can yield clarity estimates that either under- or overestimate the underwater light climate for restoration goals, such as poten-
tial habitat available for submerged aquatic vegetation. Best practices in reporting water clarity measurements include region-
ally specific, temporally representative calibrations and communicating the metric that was actually measured. An intentional
choice of the water clarity metric best suited to the research or management question yields the most useful results.

The term “water clarity” is inherently ambiguous. Water
clarity generally refers to the distance that light penetrates
through water, as well as the visibility of objects through
water. In lakes, rivers, estuaries, coastal zones, and the open
ocean, water clarity is an essential measurement for monitor-
ing programs and a wide variety of research applications. For
example, water clarity is used to assess habitat quality for
submerged aquatic vegetation (SAV), to study visual preda-
tion, and to model primary production. Water clarity is mea-
sured using multiple methods, some focused on the depth of
light penetration, some based on the depth of object visibil-
ity, and others based on the amounts of components pre-
sent (Fig. 1).

*Correspondence: jturner@uconn.edu

General metrics presented here include: Secchi disk depth
(Zsp) (Secchi and Cialdi 1866; Tyler 1968; Preisendorfer 1986),
the downwelling and scalar light attenuation coefficients of
photosynthetically active radiation (K4q(PAR) and K,(PAR))
(Kirk 1994), turbidity (Zaneveld et al. 1980; Davies-Colley and
Smith 2001; Sampedro and Salgueiro 2015; Eidam et al. 2022),
and beam attenuation (Bishop 1999). In this paper, the terms
Kq and K, will refer to K4(PAR) and K,(PAR). Zsp, K,, and Ky
are apparent optical properties, descriptors of water bodies
that depend on both the substances present and the light field
(Mobley 2022). Component-based metrics include colored dis-
solved organic matter (CDOM) commonly measured by its
light absorption (aCDOM,; m™Y) (Green and Blough 1994) or
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Fig. 1. Common metrics used to monitor water clarity. General metrics
presented here include Secchi depth (Zsp), light attenuation of photosyn-
thetically active radiation (K4(PAR); referred to in this paper as Kg), turbid-
ity, and beam attenuation. Metrics identified with specific components of
the water column include colored dissolved organic matter (CDOM), total
suspended solids concentration (TSS) (also known as suspended particu-
late matter, or SPM), and chlorophyll a concentration (Chl a). Some sym-
bols are adapted from IAN UMCES media library.

its fluorescence (Stedmon et al. 2003), chlorophyll a pigment
concentration (Chl ¢; mg m~%) commonly measured by its
fluorescence (Holm-Hansen et al. 1965; Welschmeyer 1994),
and total suspended solids concentration (TSS; mg L) also
known as suspended particulate matter, total suspended mat-
ter, or suspended sediment concentration (Ball 1964). For
CDOM and Chl a, conversions from fluorescence to aCDOM
and Chl a pigment concentration may need to account for
confounding factors, such as non-fluorescing components,
Chl a daytime nonphotochemical quenching, and high-scat-
tering environments that can affect the strength of the signal
(Oestreich et al. 2016; Cremella et al. 2018; Carberry
et al. 2019).

In this essay, we share a case study from the York River
estuary (henceforth referred to as the York), a subestuary of
the Chesapeake Bay. This location illustrates a clarity measure-
ment puzzle, the likes of which occurs in many other water
bodies globally. The dataset includes coincident measure-
ments of Chl g, turbidity, K,, and Zsp from Fall (2020); coinci-
dent measurements of Chl a, turbidity, and K4 from the
Chesapeake Bay National Estuarine Research Reserve in Vir-
ginia (CBNERR-VA); and coincident measurements of K4 and
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Zsp from the Chesapeake Bay Program (CBP) Water Quality
monitoring program, all from 2014 to 2016 (Turner
et al. 2022). Fall (2020) data were collected irregularly in time
at eight stations within the York (Fig. 2A). CBNERR-VA and
CBP data were collected once or twice per month at the
Goodwin Islands and WE4.2 long-term monitoring sites,
respectively (Fig. 2A).

Light attenuation is often estimated from other water
clarity metrics

Estimating light attenuation from Secchi depth is
problematic

The simple hyperbolic relationship between K4 and Zgp is
widely represented as Kq = a/Zsp such that the product of
Kgq X Zsp = a (Holmes 1970). However, often K4 and Zsp do
not adhere to a consistent relationship described by a con-
stant a. The value of a has been found to vary widely in estu-
aries, lakes, and other aquatic environments across many
latitudes, hydrologies, and climatic conditions (Lee
et al. 2018; Bowers et al. 2020). Consequently, in turbid envi-
ronments it is often disadvantageous to calibrate a (Pre-
isendorfer 1986). In the present study, the York serves as an
extreme example of this variability (Fig. 2B).

Instead, what information can be gained from the
decoupling of K4 and Zgp? First, if the goal is to understand
light penetration, measuring Ky directly will be most useful
(Table 1). Second, if the goal is instead to understand transpar-
ency or visibility, measuring Zsp alone may suffice. Finally,
simultaneous measurement of K4 and Zsp can be used to gain
insight into how dissolved and particulate constituents inter-
act with light, since the mismatch between K4 and Zsp yields
more information about light-blocking substances in the
water.

This mismatch between Ky and Zsp provides useful infor-
mation about the constituents that limit light penetration. In
moderately turbid waters, K4 often has a smaller value (i.e.,
indicates clearer water) than that predicted based on a simple
relationship with Zgsp (@< 1.45). Smaller K4 values than
expected based on Zgp, are often attributed to the properties of
the suspended particles (Hou et al. 2007), such as reduced visi-
bility of the disk due to increased forward scattering by small
organic particles (Hernandez and Gocke 1988; Armengol
et al. 2003; Effler and Peng 2012). For example, changes in
particle scattering may contribute to the long-term shallowing
of Zsp in the Chesapeake Bay while Ky indicates minimal
change or even an improvement in clarity (Gallegos
et al. 2011; Harding et al. 2016; Testa et al. 2019; Turner
et al. 2021). In the other direction, high quantities of CDOM
can cause deeper Zsp compared to what Kq would predict, due
to high visibility yet rapid light absorption (a > 1.45) (Peder-
sen et al. 2014).

Water clarity is critical for SAV, which requires light pene-
tration to depth for photosynthesis. During SAV restoration
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Fig. 2. York River estuary case study location and water clarity data. Blue circles indicate cruise measurements from Fall (2020). Red squares indicate Chesa-
peake Bay National Estuarine Research Reserve in Virginia measurements at the Goodwin Islands station. Black triangles indicate Chesapeake bay Program
cruise measurements at station WE4.2. (A) Map of data collection locations in southwestern Chesapeake Bay. (B) Relationship between directly measured
light attenuation coefficient (Kq) and observed « (the product K4 x Secchi depth (Zsp)), black line indicates commonly used a = 1.45. (C) Directly measured
Kg vs. predicted K4 estimated from 1.45/Zsp. (D) Directly measured Ky vs. predicted K4 estimated using the York River (Virginia Group 2) attainment criteria
in USEPA (2008), where S = salinity, T = turbidity (NTU), and Chl = chlorophyll a concentration (mg m~3). Black lines in (€) and (D) indicate a 1 : 1 rela-
tionship between observed Kq4 and predicted Kq4. In all subplots, Fall (2020) blue circles indicate scalar light attenuation (K,) measurements in place of down-
welling light attenuation (Kg). Values for K4 and K, differ minimally in turbid, optically deep waters (Kirk 1994; Tilzer et al. 1995).

work, the use of one water clarity metric to estimate another
can over- or under-estimate depth limits of habitats. For
example, in a fjord in Denmark, Zsp deepened over time, but
K4 remained relatively high due to large CDOM concentra-
tions, causing Zsp to overestimate the potential habitat for
SAV (Pedersen et al. 2014). Consequently, K4 should be used
rather than Zgp, as a proxy for light penetration depths to infer
SAV habitat quality, since the plants collect plane irradiance
(Zimmerman 2003, 2006).

Estimating K4 from multiple metrics
Researchers and monitoring programs frequently estimate
Kq from a subset of other metrics. In oligotrophic waters,

these relationships are based on the contributions to Ky
mainly from phytoplankton; thus, Kyq is most commonly
derived from Chl a (Smith and Baker 1978; Baker and
Smith 1982; Kim et al. 2015). In coastal waters, estuaries, and
many lakes and rivers, Kq is estimated from not only Chl a,
but also CDOM (or salinity) and TSS (Woodruff 1996;
Gallegos 2001; Fear et al. 2004; Xu et al. 2005; USEPA 2008;
Feng et al. 2015; Cerco and Noel 2017; Turner et al. 2021).
Other estimations of Kq from multiple metrics employ semi-
analytical relationships (e.g., Gallegos 2001; Lee et al. 2005,
2007; Zimmerman et al. 2015), enabling the use of satellite
remote sensing to estimate water clarity at high spatial resolu-
tions relevant to lakes and estuaries (Lee et al. 2015, 2016).
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Table 1. Usefulness of common water clarity metrics for different applications.

Variable Other names or related metrics

Units Recommended applications

Ky Ko, Kg~', PLW, light extinction coefficient

Zsp Transparency, visibility

Turbidity OBS, side-scattering

Beam attenuation Light transmission, transmissometry

aCDOM CDOM, gelbstoff, gilvin
Chl a Chl a fluorescence
TSS TSM, SPM, SSC

m~' e Submerged aquatic vegetation

¢ Benthic micro-algae
e Coral reefs
* Photosynthesis
¢ Phytoplankton dynamics
* Heat transfer
m e Visibility and transparency
¢ Property values and recreation

e Fish predation on mesopredators and
related behaviors

¢ Citizen science and community
engagement

e Comparison to long-term historical
data sets

FNU, FTU, NTU ¢ Total light scattering by particles

* Long-term measurements with simple but
resilient sensors

m ¢ Proxy for particulate organic carbon in
oligotrophic waters

* Long-term measurements with simple but
resilient sensors

m e Dissolved substances from rivers and
wetlands

¢ Dissolved substances produced by marine
plankton

e Contribution of dissolved substances to
spectral Kq
mg m~ * Primary production
e Contribution of algae to Ky
¢ Phytoplankton dynamics
e Harmful algal blooms

e Long-term measurements with simple but
resilient sensors

e Marsh accretion

¢ Contribution of particles to Kg
¢ Sediment seabed modeling

e Mass transport of sediments

e Health of oyster reefs

mg L™

In the Chesapeake Bay and its tributaries, monitoring pro-
grams map Ky spatially in shallow waters to assess habitat
potential for SAV, making use of an empirical equation with
turbidity, salinity (as a proxy for CDOM), and Chl a. These
latter three metrics are collected with a flow-through method,
increasing the temporal and spatial coverage. K4 is measured
directly at a few validation stations, but it is also often calcu-
lated from regionally determined empirical relationships with
turbidity, salinity, and Chl a. This approach groups multiple
subregions and time periods together to generate a

relationship that describes a wider distribution of conditions
(Dennison et al. 1993; USEPA 2003, 2007, 2008; Moore
et al. 2009; Reay 2009; Tango and Batiuk 2013).

Best practices for estimating water clarity using
available resources
Report the metric that was measured

Perhaps the most important practice in measuring water
clarity is to report the actual metric used. Some studies use
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one term when the metric analyzed does not represent what
the term implies. For example, Wang et al. (2013) describe
patterns in K4 when the metric measured was actually Zgp,
from which K4 was derived using the conventional K4 = 1.45/
Zgp relationship that is inherently less useful in turbid waters
(Fig. 2B,C). However, if an empirical equation between metrics
is required due to cost, sampling resolution needs, or other
factors, then the method should be clearly communicated (e.
g., CDOM estimated from salinity), and the cross-calibration
data used should be made available. In the case of light atten-
uation, the use of a scalar (K,) or downwelling (Kg) coefficient
should be reported explicitly.

Measure K4 with deep light profiles

In some cases, Kg may be over- or under-estimated due to
measurement error when light profiles do not extend deep
enough into the water column. Collecting downwelling or
scalar irradiance depth profiles over varying depth ranges can
result in inconsistent estimates of the best-fit Ky most relevant
to the full photic zone, particularly when irradiance is not
measured to a deep enough light penetration depth (Lee
et al. 2018). Whenever possible, light profiles should be mea-
sured to the depth of 1% illumination to avoid measurement
e1Tor.

Locally calibrated

Empirical models for K4 need to be locally calibrated
because the characteristics of the water’s dissolved and partic-
ulate matter vary greatly, sometimes at a fine spatial scale. In
the Chesapeake Bay, a single K4 relationship applies only to
some subregions, but not all. In smaller tributary rivers such
as the York and Elizabeth Rivers, there is relatively more
CDOM, while in larger tributary rivers such as the Potomac
and Susquehanna Rivers, there is relatively less CDOM than
salinity would predict (Cerco and Noel 2017). The diversity in
contributions to Ky likely results from the variety of river
inputs; while the largest rivers have mountainous uplands
and deliver relatively more sediment, the smaller rivers drain
coastal plains and wetlands and deliver relatively more CDOM
(Najjar et al. 2020; Henderson and Bukaveckas 2022). In addi-
tion, the response of K4 to TSS may vary strongly with dis-
tance along a given estuary due to systematic variations in
suspended sediment floc size, density, and organic content
(Yard 2003; Fall et al. 2020).

Temporally representative

Ideally, a relationship used to estimate K4 should incorpo-
rate measurements representative of different times and con-
ditions, so that the variability over the targeted dataset is
captured. A calibration performed during one season or tidal
stage will likely not apply to the entire dataset of interest. In
the York, an empirical relationship developed during a certain
set of years (pre-2008) underestimates clarity compared to
observations collected years later (Fig. 2D). The disagreement
may be in part because 2014-2016 were hydrologically dry
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years in the Chesapeake Bay with lower nutrient and TSS con-
centrations, and generally clearer water than the early 2000s.
These types of discrepancies have implications for manage-
ment and restoration of important habitats. In the York exam-
ple (Fig. 2D), directly measured K4 would predict a greater
spatial area suitable for SAV, while the empirical relationship
from USEPA (2008) underestimates light availability. It could
be argued that this somewhat conservative underestimation
of habitat is a minor problem. However, overestimating light
availability would result in negative ecological implications
such as overpredicting the amount of suitable habitat for SAV
(e.g., Pedersen et al. 2014).

Choose wisely: Select a water clarity metric targeting
the research or management goal

When planning water clarity measurements, it is rec-
ommended to select the most useful metric or metrics
according to the specific application (Table 1). For example, if
K4 can be measured directly, it should be measured using a
light sensor rather than estimated from other metrics. If an
empirical relationship or a simple sensor is needed due to cost
or other factors, use of best practices is recommended. When
relevant to the goal, even the simplest water clarity measure-
ments are valuable for environmental monitoring and restora-
tion, whether by citizen scientists, non-profit organizations,
or local sampling programs.

Kq is the most relevant measure of water clarity for most
research in aquatic ecosystems. K4 is well-suited to research
involving benthic autotrophs such as SAV in estuaries
(Zimmerman 2003; Moore 2004) and lakes (Schwarz
et al. 1996, Borowiak et al. 2017), benthic microalgae (Newell
et al. 2002), kelp forests (Graham et al. 2007; Tait et al. 2021),
and coral reef habitats (Baird et al. 2016; Jones et al. 2016).
Scalar or downwelling light attenuation (K, or Kyq) may be
more appropriate for different applications. For phytoplank-
ton photosynthesis, K, better represents the amount of total
light energy available to cells from all directions. For benthic
macrophytes, K4 is more suitable because plants’ flat leaves
collect downwelling light (Zimmerman 2003, 2006). For citi-
zen scientists or non-profit organizations wishing to measure
K4 directly, low cost light intensity loggers are available as an
alternative to expensive traditional sensors (Long et al. 2012).

Zsp is a representative measurement of visibility. Zsp
applies to human perception of water clarity (Keeler
et al. 2015; West et al. 2016) and water clarity’s effect on
property values (Klemick et al. 2018). Zsp is also relevant for
sighted animals and their trophic interactions, such as visual
foraging efficiency of zooplankton and fish (Aksnes 2007;
Aksnes et al. 2004; Gozdziejewska and Kruk 2022) and interac-
tions between predators and mesopredators (Benfield and
Minello 1996; Baptist and Leopold 2010; Lunt and Smee 2014;
Reustle and Smee 2020). Zgp also serves an important role in
citizen science and community engagement (Crooke
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et al. 2017; Pitarch 2020) and in maintaining especially long
time-series (Jassby et al. 2003; Opdal et al. 2019).

TSS is a representative measurement of particles that block
light, directly affecting water clarity. However, TSS is truly a
measurement of the mass of suspended particles rather than
light penetration. Therefore, TSS may be most useful for
research applications that benefit from quantifying the mass
of sediments present in the water column, such as questions
involving sediment resuspension, shoreline erosion, or river
inputs (Fall et al. 2014; Palinkas et al. 2019; Tarpley
et al. 2019; Moriarty et al. 2020). TSS can be a useful metric
for shellfish research, since high concentrations of sediments
can clog oyster gills and can blanket oyster reefs via deposi-
tion (Luckenbach et al. 1999; Beck et al. 2011; Gernez
et al. 2014).

Chl g, turbidity, and beam attenuation are useful in that
recent technologies allow sensors to be deployed at relatively
low cost for long periods of time. Platforms like buoys, moor-
ings, and floats are well suited for optical in situ sensors, thus
many programs use these sensors for continuous long-term
monitoring (Boss et al. 2018). Chl a and turbidity are often
used in the field as stand-alone metrics. Chl a provides more
information about the effects of phytoplankton on the under-
water light climate, while turbidity provides more information
about light scattering by suspended particles (Boss
et al. 2009).

Looking to the future, the ability to collect data at high
spatial and temporal resolution by a wider diversity of
researchers is critical. While these measurements may be less
directly representative of K4 in dynamic systems, their impor-
tance should not be diminished. Provided that calibrations
are well-performed, these simple longer-term measurements
represent a fruitful way forward in water clarity research and
monitoring. When factors contributing to light attenuation
are not well understood, multiple measurements are needed
to evaluate the relative magnitude and importance of the fac-
tors affecting light reduction. Use of multiple metrics is espe-
cially important in management of the causes of changes in
water clarity.
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