2,179 research outputs found

    Multimodal Grasp Planner for Hybrid Grippers in Cluttered Scenes

    Get PDF
    Grasping a variety of objects is still an open problem in robotics, especially for cluttered scenarios. Multimodal grasping has been recognized as a promising strategy to improve the manipulation capabilities of a robotic system. This work presents a novel grasp planning algorithm for hybrid grippers that allows for multiple grasping modalities. In particular, the planner manages two-finger grasps, single or double suction grasps, and magnetic grasps. Grasps for different modalities are geometrically computed based on the cuboid and the material properties of the objects in the clutter. The presented framework is modular and can leverage any 6D pose estimation or material segmentation network as far as they satisfy the required interface. Furthermore, the planner can be applied to any (hybrid) gripper, provided the gripper clearance, finger width, and suction diameter. The approach is fast and has a low computational burden, as it uses geometric computations for grasp synthesis and selection. The performance of the system has been assessed with an experimental campaign in three manipulation scenarios of increasing difficulty using the objects of the YCB dataset and the DLR hybrid-compliant gripper

    CLASH—A Compliant Sensorized Hand for Handling Delicate Objects

    Get PDF
    Automation of logistic tasks, such as object picking and placing, is currently one of the most active areas of research in robotics. Handling delicate objects, such as fruits and vegetables, both in warehouses and in plantations, is a big challenge due to the delicacy and precision required for the task. This paper presents the CLASH hand, a Compliant Low-Cost Antagonistic Servo Hand, whose kinematics was specifically designed for handling groceries. The main feature of the hand is its variable stiffness, which allows it to withstand collisions with the environment and also to adapt the passive stiffness to the object weight while relying on a modular design using off-the-shelf low-cost components. Due to the implementation of differentially coupled flexors, the hand can be actuated like an underactuated hand but can also be driven with different stiffness levels to planned grasp poses, i.e., it can serve for both model-based grasp planning and for underactuated or model-free grasping. The hand also includes self-checking and logging processes, which enable more robust performance during grasping actions. This paper presents key aspects of the hand design, examines the robustness of the hand in impact tests, and uses a standardized fruit benchmarking test to verify the behavior of the hand when different actuator and sensor failures occur and are compensated for autonomously by the hand

    Experimental Evaluation of Tactile Sensors for Compliant Robotic Hands

    Get PDF
    The sense of touch is a key aspect in the human capability to robustly grasp and manipulate a wide variety of objects. Despite many years of development, there is still no preferred solution for tactile sensing in robotic hands: multiple technologies are available, each one with different benefits depending on the application. This study compares the performance of different tactile sensors mounted on the variable stiffness gripper CLASH 2F, including three commercial sensors: a single taxel sensor from the companies Tacterion and Kinfinity, the Robotic Finger Sensor v2 from Sparkfun, plus a self-built resistive 3 × 3 sensor array, and two self-built magnetic 3-DoF touch sensors, one with four taxels and one with one taxel. We verify the minimal force detectable by the sensors, test if slip detection is possible with the available taxels on each sensor, and use the sensors for edge detection to obtain the orientation of the grasped object. To evaluate the benefits obtained with each technology and to assess which sensor fits better the control loop in a variable stiffness hand, we use the CLASH gripper to grasp fruits and vegetables following a published benchmark for pick and place operations. To facilitate the repetition of tests, the CLASH hand is endowed with tactile buttons that ease human–robot interactions, including execution of a predefined program, resetting errors, or commanding the full robot to move in gravity compensation mode

    CLASH WRIST - A hardware to increase the capability of CLASH fruit gripper to use environment constraints exploration

    Get PDF
    Humans use environmental constraints (EC) in manipulation to compensate for uncertainties in their world model. The same principle was recently applied to robotics, so that soft underactuated hands improve their grasping capability by using environmental constraints exploitation (ECE) [1]. Due to orientation of the robotic hand for example in the EC wall grasp, the length of the robot wrist plus the hand length gets quite important, if objects are grasp out of a box [2] . Most of the modern cobots have quite long wrist, so we have constructed a two degree of freedom wrist for the CLASH [3], to solve this problem (Fig. 1)

    CLASH WRIST - A hardware to increase the capability of CLASH fruit gripper to use environment constraints exploration

    Get PDF
    Humans use environmental constraints (EC) in manipulation to compensate for uncertainties in their world model. The same principle was recently applied to robotics, so that soft underactuated hands improve their grasping capability by using environmental constraints exploitation (ECE) [1]. Due to orientation of the robotic hand for example in the EC wall grasp, the length of the robot wrist plus the hand length gets quite important, if objects are grasp out of a box [2] . Most of the modern cobots have quite long wrist, so we have constructed a two degree of freedom wrist for the CLASH [3], to solve this problem (Fig. 1)

    Head-Down Tilt Position, but Not the Duration of Bed Rest Affects Resting State Electrocortical Activity

    Get PDF
    Adverse cognitive and behavioral conditions and psychiatric disorders are considered a critical and unmitigated risk during future long-duration space missions (LDSM). Monitoring and mitigating crew health and performance risks during these missions will require tools and technologies that allow to reliably assess cognitive performance and mental well-being. Electroencephalography (EEG) has the potential to meet the technical requirements for the non-invasive and objective monitoring of neurobehavioral conditions during LDSM. Weightlessness is associated with fluid and brain shifts, and these effects could potentially challenge the interpretation of resting state EEG recordings. Head-down tilt bed rest (HDBR) provides a unique spaceflight analog to study these effects on Earth. Here, we present data from two long-duration HDBR experiments, which were used to systematically investigate the time course of resting state electrocortical activity during prolonged HDBR. EEG spectral power significantly reduced within the delta, theta, alpha, and beta frequency bands. Likewise, EEG source localization revealed significantly lower activity in a broad range of centroparietal and occipital areas within the alpha and beta frequency domains. These changes were observed shortly after the onset of HDBR, did not change throughout HDBR, and returned to baseline after the cessation of bed rest. EEG resting state functional connectivity was not affected by HDBR. The results provide evidence for a postural effect on resting state brain activity that persists throughout long-duration HDBR, indicating that immobilization and inactivity per se do not affect resting state electrocortical activity during HDBR. Our findings raise an important issue on the validity of EEG to identify the time course of changes in brain function during prolonged HBDR, and highlight the importance to maintain a consistent body posture during all testing sessions, including data collections at baseline and recovery

    Simulation of Radiation-Induced Damage Distribution to evaluate Models for Higher-Order Chromosome Organisation

    Get PDF
    The structure of chromatin at the level of the 30 nm fibre has been studied in considerable detail, but little is known about how this fibre is arranged within the interphase chromosome territory. Over the years, various polymer models were developed to simulate chromosome structure, for example the random-walk/giant-loop (RWGL) model, the multi-loop subcompartment (MLS) model, and the interconnected-fibre-loop model (Friedland et al., 1999). These models differ mainly in the size and arrangement of the chromatin loops and, correspondingly, in the predicted distribution of chromatin density within the nucleus. It occurred to us that densely ionising radiation can be used to probe the actual distribution of chromatin density in human interphase cells. In contrast to sparsely ionising radiation (e.g. X-rays), which induces DNA double-strand breaks (DSB) that are distributed randomly within the nucleus, irradiation with densely ionising accelerated ions leads to spatial clustering of DSB. This inhomogeneity in DSB localisation, together with an inhomogeneity of DNA density within the nucleus, causes an over-dispersion in the resulting distribution of DNA fragment sizes that can be detected by pulsed-field gel electrophoresis. Using the above-mentioned chromosome models, we performed computer simulations to predict the DNA fragment size distributions resulting from irradiation with accelerated ions, and compared the predicted distributions with those obtained experimentally. We found that simulations based on the MLS model, in which local variations in chromatin density are higher than in the other models, resulted in the best agreement between calculation and experiment

    Human-Robotic Variable-Stiffness Grasps of Small-Fruit Containers Are Successful Even Under Severely Impaired Sensory Feedback

    Get PDF
    Application areas of robotic grasping extend to delicate objects like groceries. The intrinsic elasticity offered by variable-stiffness actuators (VSA) appears to be promising in terms of being able to adapt to the object shape, to withstand collisions with the environment during the grasp acquisition, and to resist the weight applied to the fingers by a lifted object during the actual grasp. It is hypothesized that these properties are particularly useful in the absence of high-quality sensory feedback, which would otherwise be able to guide the shape adaptation and collision avoidance, and that in this case, VSA hands perform better than hands with fixed stiffness. This hypothesis is tested in an experiment where small-fruit containers are picked and placed using a newly developed variable-stiffness robotic hand. The grasp performance is measured under different sensory feedback conditions: full or impaired visual feedback, full or impaired force feedback. The hand is switched between a variable-stiffness mode and two fixed-stiffness modes. Strategies for modulating the stiffness and exploiting environmental constraints are observed from human operators that control the robotic hand. The results show consistently successful grasps under all stiffness and feedback conditions. However, the performance is affected by the amount of available visual feedback. Different stiffness modes turn out to be beneficial in different feedback conditions and with respect to different performance criteria, but a general advantage of VSA over fixed stiffness cannot be shown for the present task. Guidance of the fingers along cracks and gaps is observed, which may inspire the programming of autonomously grasping robots
    • …
    corecore