124 research outputs found
D-SERINE CONTRIBUTES TO β-AMYLOID-DEPENDENT PATHOPHYSIOLOGYIN ALZHEIMER’S DISEASE
International audienceB fEPSP/PFV ra>o 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 WT 5xFAD 5xFAD/SR-/-+ D-s e ri n e + D-s e ri n e + D-s e ri n e Key regulators of the structural and funcFonal brain plasFcity, the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) requires the binding of the co-agonist D-serine to be acFvated. In Alzheimer's disease (AD), soluble oligomers of the beta-amyloid pepFde (Aßo) affect NMDARs possibly through mechanisms involving changes in D-serine levels since Aßo sFmulate in vitro the producFon of the co-agonist. In this study, we asked whether D-serine contributes in vivo to morpho-funcFonal NMDAR-related deregulaFons mediated by Aßo. Behavioral analysis combined to electrophysiological recordings at CA1/CA3 hippocampal synapses have been thus conducted in the 5xFAD transgenic mice model of amyloïdogenesis displaying marked increase in Aßo rates and compared to 5xFAD animals in which the homozygous gene of the serine racemase (SR) that synthesizes D-serine, has been jointly invalidated. Our results therefore show that deleFon of serine racemase prevents memory-related behavioral deficits observed in mice with prominent features of amyloidogenesis as well as impairment of NMDAR-dependent funcFonal plasFcity, suggesFng a significant contribuFon of D-serine in NMDAR-dependent β-amyloid-related pathophysiology of Alzheimer's disease. EXPERIMENTAL PROCEDURES 1) Behavioral analysis: 8-min spontaneous alternaFon test was performed in a Y maze apparatus to assess working memory performances in 10-12 months of aged mice. Successive entry of the three arms of the maze was considered as an alternaFon. The percentage of alternaFon was calculated as follows: number of alternaFons / (total number of arms visited-2) x 100. 2) Electrophysiology: Hippocampal slices (400 µm thickness) were cut from two groups of WT, 5xFAD/SR +/+ and 5xFAD/SR-/-mice aged 3-4 or 10-12 months. Field excitatory postsynapFc potenFals (fEPSPs) and presynapFc fiber volley (PFV) were extracellularly recorded in CA1 stratum radiatum aner electrical sFmulaFon of Schaffer collaterals. Input/output curves of the fEPSP/PFV raFo of isolated NMDAr-mediated fEPSPs were constructed in a low magnesium medium supplemented with the non-NMDAr antagonist NBQX (10µM) before and 15 min aner addiFon of D-serine (100 µM). High frequency (HFS)-induced long-term potenFaFon (LTP) was studied in control medium aner tetanic sFmulaFon consisFng in one train at 100 Hz delivered for 1 sec. TesFng sFmulaFon was then resumed for 60 min aner HFS. 3) Semi-quanFtaFve immunoblopng analysis: Hippocampal Fssue was homogenized in protein lysis buffer. The membranes were probed with anFbodiesaginst GluN1 (1:750
Altering glutamate transmission in combination with an early post-natal stress to mimic schizophrenia in male and female mice
International audienc
IMPACT OF D-SERINE DEPLETION IN THE β-AMYLOID CASCADERELATED TO ALZHEIMER’S DISEASE
International audienceD-serine, as a co-agonist of N-methyl-D-aspartate subtype of glutamate receptors (NMDAR), is a key regulator of their activation and hence involves in functional brain plasticity and memory process. The homeostasis of these receptors is affected by soluble oligomers of the beta-amyloid peptide (Aß) in Alzheimer´s disease (AD). In the course of AD, early functional dysregulations of NMDAR are well known, even though contribution of D-serine remains so far to be determined. In 3-4 month-old transgenic mice model of amyloïdogenesis (5xFAD) showing marked increase in Aß rates and apparent unaffected D-serine levels, extracellular electrophysiological recordings reveal impaired NMDAR-dependent long-term potentiation at CA1/CA3 hippocampal synapses, without significant changes in basal synaptic transmission. This deficit persists at 12 month of age when amyloid deposits are present with concomitant disabilities in cognitive functions. Generating 5xFAD mice with depletion of D-serine (through invalidation of the synthesis enzyme: Serine Racemase), we observed that these functional alterations and the long-term behavioral impairment were prevented whereas Aßo rates remain significantly elevated and comparable to 5xAFD mice. Therefore, these results provide convincing evidence for a critical and transient involvement of D-serine in hippocampal network dysfunctions and related cognitive disabilities driven by increased amyloidogenesis
D-‐SERINE IS INVOLVED IN THE β-‐AMYLOID-‐RELATED PATHOPHYSIOLOGYIN ALZHEIMER’S DISEASE
International audienc
Population dynamics of the endangered seahorse Hippocampus reidi Ginsburg, 1933 in a tropical rocky reef habitat
This study was conducted in Armação de Búzios, Brazil, a municipality where ecosystem degradation has been observed following large increases in tourism and population growth. The goal of this study was to determine seasonal variations in three Búzios populations of the long snout seahorse Hippocampus reidi. Monthly dives were conducted from November 2011 to October 2013. All three subpopulations had low densities of seahorses and no seasonality. The sex ratio differed at each site. The most commonly used microhabitats were the sponge Aplysina fulva and the seaweed Sargassum sp. There was no significant difference in temperature and salinity. The environmental trends could not explain the variation in seahorse density at the three beaches. The population showed no seasonality and no further decline
On the importance of long-term functional assessment after stroke to improve translation from bench to bedside
Despite extensive research efforts in the field of cerebral ischemia, numerous disappointments came from the translational step. Even if experimental studies showed a large number of promising drugs, most of them failed to be efficient in clinical trials. Based on these reports, factors that play a significant role in causing outcome differences between animal experiments and clinical trials have been identified; and latest works in the field have tried to discard them in order to improve the scope of the results. Nevertheless, efforts must be maintained, especially for long-term functional evaluations. As observed in clinical practice, animals display a large degree of spontaneous recovery after stroke. The neurological impairment, assessed by basic items, typically disappears during the firsts week following stroke in rodents. On the contrary, more demanding sensorimotor and cognitive tasks underline other deficits, which are usually long-lasting. Unfortunately, studies addressing such behavioral impairments are less abundant. Because the characterization of long-term functional recovery is critical for evaluating the efficacy of potential therapeutic agents in experimental strokes, behavioral tests that proved sensitive enough to detect long-term deficits are reported here. And since the ultimate goal of any stroke therapy is the restoration of normal function, an objective appraisal of the behavioral deficits should be done
Патопсихологические особенности и закономерности развития органических психических расстройств при болезни Паркинсона
Проанализированы особенности эмоционально−потребностной сферы, выраженность личностных особенностей, типы отношения к болезни у пациентов с болезнью Паркинсона (БП) и психическими расстройствами. Выявлены патопсихологические факторы формирования органического депрессивного расстройства (F06.36), органического тревожного расстройства (F06.4), органического эмоционально−лабильного расстройства (F06.6), описаны механизмы их патогенеза. Относительно деменции (F02.3) у больных БП единого патопсихологического механизма ее формирования не обнаружено, основная роль в ее патогенезе принадлежит органическому поражению головного мозга.Проаналізовано особливості емоційно−потребової сфери, виразність особистісних особливостей, типи ставлення до хвороби у пацієнтів із хворобою Паркінсона (ХП) та психічними розладами. Виявлено патопсихологічні фактори формування органічного депресивного розладу (F06.36), органічного тривожного розладу (F06.4), органічного емоційно−лабільного розладу (F06.6), описано механізми їх патогенезу. Щодо деменції (F02.3) у хворих на ХП єдиного патопсихологічного механізму її формування не виявлено, основна роль в її патогенезі належить органічному ураженню головного мозку.The peculiarities of emotion−need sphere, degree of personality peculiarities, types of attitude to the disease were analyzed in patients with Parkinson's disease (PD) and mental disorders. Pathopsychological factors of forming organic depressive disorder (F06.36), organic anxiety disorder (F06.4), organic emotional−labile disorder (F06.6) were revealed. The mechanisms of their pathogenesis were described. As for dementia (F02.3), uniform pathopsychological mechanism of its formation was not revealed in patients with PD. Main role in its pathogenesis is played by organic brain lesions
Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment
Abstract Rationale Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are increasingly used for the treatment of depression in children. Limited data are, however, available on their effects on brain development and their efficacy remains debated. Moreover, previous experimental studies are seriously hampered in their clinical relevance. Objectives The aim of the present study was to investigate putative age-related effects of a chronic treatment with fluoxetine (5 mg/kg, either orally or i.p. for 3 weeks, 1 week washout) using conventional methods (behavioral testing and binding assay using [ 123 I]β-CIT) and a novel magnetic resonance imaging (MRI) approach. Methods Behavior was assessed, as well as serotonin transporter (SERT) availability and function through ex vivo binding assays and in vivo pharmacological MRI (phMRI) with an acute fluoxetine challenge (10 mg/kg oral or 5 mg/kg i.v.) in adolescent and adult rats. Results Fluoxetine caused an increase in anxiety-like behavior in treated adult, but not adolescent, rats. On the binding assays, we observed increased SERT densities in most cortical brain regions and hypothalamus in adolescent, but not adult, treated rats. Finally, reductions in brain activation were observed with phMRI following treatment, in both adult and adolescent treated animals. Conclusion Collectively, our data indicate that the shortterm effects of fluoxetine on the 5-HT system may be agedependent. These findings could reflect structural and functional rearrangements in the developing brain that do not occur in the matured rat brain. phMRI possibly will be well suited to study this important issue in the pediatric population
Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy
<p>Abstract</p> <p>Background</p> <p>Traditional magnetic resonance (MR) imaging can identify abnormal changes in ipsilateral thalamus in patients with unilateral middle cerebral artery (MCA) infarcts. However, it is difficult to demonstrate these early changes quantitatively. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (MRS) are potentially sensitive and quantitative methods of detection in examining changes of tissue microstructure and metabolism. In this study, We used both DTI and MRS to examine possible secondary damage of thalamus in patients with corona radiata infarction.</p> <p>Methods</p> <p>Twelve patients with unilateral corona radiata infarction underwent MR imaging including DTI and MRS at one week (W1), four weeks (W4), and twelve weeks (W12) after onset of stroke. Twelve age-matched controls were imaged. Mean diffusivity (MD), fractional anisotropy (FA), N-acetylaspartate (NAA), choline(Cho), and creatine(Cr) were measured in thalami.</p> <p>Results</p> <p>T1-weighted fluid attenuation inversion recovery (FLAIR), T2-weighted, and T2-FLAIR imaging showed an infarct at unilateral corona radiate but no other lesion in each patient brain. In patients, MD was significantly increased at W12, compared to W1 and W4 (all <it>P</it>< 0.05). NAA was significantly decreased at W4 compared to W1, and at W12 compared to W4 (all <it>P</it>< 0.05) in the ipsilateral thalamus. There was no significant change in FA, Cho, or Cr in the ipsilateral thalamus from W1 to W12. Spearman's rank correlation analysis revealed a significant negative correlation between MD and the peak area of NAA, Cho, and Cr at W1, W4, and W12 and a significant positive correlation of FA with NAA at W1.</p> <p>Conclusions</p> <p>These findings indicate that DTI and MRS can detect the early changes indicating secondary damage in the ipsilateral thalamus after unilateral corona radiata infarction. MRS may reveal the progressive course of damage in the ipsilateral thalamus over time.</p
Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke
Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke
- …