252 research outputs found

    Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery

    Get PDF
    Polyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs. Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of alginate, dextran sulfate, poly-(ethylene glycol) 4000, poloxamer 188, chitosan, and bovine serum albumin. The nanocomposites were obtained by Ca2+-induced gelation of alginate followed by an electrostatic-interaction process among the polyelectrolytes. Chitosan seemed to be essential for the final size of the nanocomposites and there was an optimal content that led to the synthesis of nanocomposites of 400–600 nm hydrodynamic size. The enhanced stability of the synthesized nanocomposites was assessed with LUMiSizer after synthesis. Nanocomposite stability over time and under variations of ionic strength and pH were assessed with dynamic light scattering. The rounded shapes of nanocomposites were confirmed by scanning electron microscopy. After loading with insulin, analysis by HPLC revealed complete drug release under physiologically simulated conditions

    Arrest in ciliated cell expansion on the bronchial lining of adult rats caused by chronic exposure to industrial noise

    Get PDF
    Workers chronically exposed to high-intensity/low-frequency noise at textile plants show increased frequency of respiratory infections. This phenomenon prompted the herein investigation on the cytology of the bronchial epithelium of Wistar rats submitted to textile noise. Workplace noise from a cotton-mill room of a textile factory was recorded and reproduced in a sound-insulated animal room. The Wistar rats were submitted to a weekly schedule of noise treatment that was similar to that of the textile workers (8 h/day, 5 days/week). Scanning electron microscopy (SEM) was used to compare the fine morphology of the inner surface of the bronchi in noise-exposed and control rats. SEM quantitative cytology revealed that exposure to noise for 5-7 months caused inhibition in the natural expansion of the area occupied by ciliated cells on the bronchial epithelium as adult rats grow older. This difference between noise-exposed and age-matched control rats was statistically significant (P<0.05) and documents that the cytology of the rat bronchial epithelium is mildly altered by noise exposure. The decrease in the area of bronchial cilia may impair the mucociliar clearance of the respiratory airways and, thus, increase vulnerability to respiratory infection

    The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chagas disease has a diverse pathology caused by the parasite <it>Trypanosoma cruzi</it>, and is indigenous to Central and South America. A pronounced feature of the trypanosomes is the kinetoplast, which is comprised of catenated maxicircles and minicircles that provide the transcripts involved in uridine insertion/deletion RNA editing. <it>T. cruzi </it>exchange genetic material through a hybridization event. Extant strains are grouped into six discrete typing units by nuclear markers, and three clades, A, B, and C, based on maxicircle gene analysis. Clades A and B are the more closely related. Representative clade B and C maxicircles are known in their entirety, and portions of A, B, and C clades from multiple strains show intra-strain heterogeneity with the potential for maxicircle taxonomic markers that may correlate with clinical presentation.</p> <p>Results</p> <p>To perform a genome-wide analysis of the three maxicircle clades, the coding region of clade A representative strain Sylvio X10 (a.k.a. Silvio X10) was sequenced by PCR amplification of specific fragments followed by assembly and comparison with the known CL Brener and Esmeraldo maxicircle sequences. The clade A rRNA and protein coding region maintained synteny with clades B and C. Amino acid analysis of non-edited and 5'-edited genes for Sylvio X10 showed the anticipated gene sequences, with notable frameshifts in the non-edited regions of Cyb and ND4. Comparisons of genes that undergo extensive uridine insertion and deletion display a high number of insertion/deletion mutations that are likely permissible due to the post-transcriptional activity of RNA editing.</p> <p>Conclusion</p> <p>Phylogenetic analysis of the entire maxicircle coding region supports the closer evolutionary relationship of clade B to A, consistent with uniparental mitochondrial inheritance from a discrete typing unit TcI parental strain and studies on smaller fragments of the mitochondrial genome. Gene variance that can be corrected by RNA editing hints at an unusual depth for maxicircle taxonomic markers, which will aid in the ability to distinguish strains, their corresponding symptoms, and further our understanding of the <it>T. cruzi </it>population structure. The prevalence of apparently compromised coding regions outside of normally edited regions hints at undescribed but active mechanisms of genetic exchange.</p

    Functional Promoter Polymorphisms Govern Differential Expression of HMG-CoA Reductase Gene in Mouse Models of Essential Hypertension

    Get PDF
    3-Hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase gene (Hmgcr) is a susceptibility gene for essential hypertension. Sequencing of the Hmgcr locus in genetically hypertensive BPH (blood pressure high), genetically hypotensive BPL (blood pressure low) and genetically normotensive BPN (blood pressure normal) mice yielded a number of single nucleotide polymorphisms (SNPs). BPH/BPL/BPN Hmgcr promoter-luciferase reporter constructs were generated and transfected into liver HepG2, ovarian CHO, kidney HEK-293 and neuronal N2A cells for functional characterization of the promoter SNPs. The BPH-Hmgcr promoter showed significantly less activity than the BPL-Hmgcr promoter under basal as well as nicotine/cholesterol-treated conditions. This finding was consistent with lower endogenous Hmgcr expression in liver and lower plasma cholesterol in BPH mice. Transfection experiments using 5′-promoter deletion constructs (strategically made to assess the functional significance of each promoter SNP) and computational analysis predicted lower binding affinities of transcription factors c-Fos, n-Myc and Max with the BPH-promoter as compared to the BPL-promoter. Corroboratively, the BPH promoter-luciferase reporter construct co-transfected with expression plasmids of these transcription factors displayed less pronounced augmentation of luciferase activity than the BPL construct, particularly at lower amounts of transcription factor plasmids. Electrophoretic mobility shift assays also showed diminished interactions of the BPH promoter with HepG2 nuclear proteins. Taken together, this study provides mechanistic basis for the differential Hmgcr expression in these mouse models of human essential hypertension and have implications for better understanding the role of this gene in regulation of blood pressure

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Analyses of 32 Loci Clarify Phylogenetic Relationships among Trypanosoma cruzi Lineages and Support a Single Hybridization prior to Human Contact

    Get PDF
    Trypanosoma cruzi is the protozoan parasite that causes Chagas disease, a major health problem in Latin America. The genetic diversity of this parasite has been traditionally divided in two major groups: T. cruzi I and II, which can be further divided in six major genetic subdivisions (subgroups TcI-TcVI). T. cruzi I and II seem to differ in important biological characteristics, and are thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. Having a correct reconstruction of the evolutionary history of T. cruzi is essential for understanding the potential connection between the genetic and phenotypic variability of T. cruzi with the different manifestations of Chagas disease. Here we present results from a comprehensive phylogenetic analysis of T. cruzi using more than 26 Kb of aligned sequence data. We show strong evidence that T. cruzi II (TcII-VI) is not a natural evolutionary group but a paraphyletic lineage and that all major lineages of T. cruzi evolved recently (<3 million years ago [mya]). Furthermore, the sequence data is consistent with one major hybridization event having occurred in this species recently (< 1 mya) but well before T. cruzi entered in contact with humans in South America
    corecore