9,760 research outputs found

    Gauge invariance, background fields and modified Ward identities

    Get PDF
    In this talk the gauge symmetry for Wilsonian flows in pure Yang-Mills theories is discussed. The background field formalism is used for the construction of a gauge invariant effective action. The symmetries of the effective action under gauge transformations for both the gauge field and the auxiliary background field are separately evaluated. Modified Ward-Takahashi and background field identities are used in my study. Finally it is shown how the symmetry properties of the full theory are restored in the limit where the cut-off is removed.Comment: 6 pages, to appear in the Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 200

    Confinement of two-dimensional excitons in a non-homogeneous magnetic field

    Full text link
    The effective Hamiltonian describing the motion of an exciton in an external non-homogeneous magnetic field is derived. The magnetic field plays the role of an effective potential for the exciton motion, results into an increment of the exciton mass and modifies the exciton kinetic energy operator. In contrast to the homogeneous field case, the exciton in a non-homogeneous magnetic field can also be trapped in the low field region and the field gradient increases the exciton confinement. The trapping energy and wave function of the exciton in a GaAs two-dimensional electron gas for specific circular magnetic field configurations are calculated. The results show than excitons can be trapped by non-homogeneous magnetic fields, and that the trapping energy is strongly correlated with the shape and strength of the non-homogeneous magnetic field profile.Comment: 9 pages, 12 figure

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    The role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature

    Full text link
    We study the symmetry breaking pattern of an O(4) symmetric model of scalar fields, with both charged and neutral fields, interacting with a photon bath. Nagasawa and Brandenberger argued that in favourable circumstances the vacuum manifold would be reduced from S^3 to S^1. Here it is shown that a selective condensation of the neutral fields, that are not directly coupled to photons, can be achieved in the presence of a minimal ``external'' dissipation, i.e. not related to interactions with a bath. This should be relevant in the early universe or in heavy-ion collisions where dissipation occurs due to expansion.Comment: Final version to appear in Phys. Rev. D, 2 figures added, 2 new sub-section

    Solving non-perturbative flow equations

    Get PDF
    Non-perturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behaviour, with associated critical exponents, can be inferred with good accuracy.Comment: Latex, 14 pages, 2 uuencoded figure

    Charge cross-over at the U(1)-Higgs phase transition

    Get PDF
    The type-I region of phase transitions at finite temperature of the U(1)-Higgs theory in 3+1 dimensions is investigated in detail using a Wilsonian renormalisation group. We consider in particular the quantitative effects induced through the cross-over of the scale-dependent Abelian charge from the Gaussian to a non-trivial Abelian fixed point. As a result, the strength of the first-order phase transition is weakened. Analytical solutions to approximate flow equations are obtained, and all characteristics of the phase transition are discussed and compared to the results obtained from perturbation theory. In addition, we present a detailed quantitative study regarding the dependence of the physical observables on the coarse-graining scheme. This results in error-bars for the regularisation scheme (RS) dependence. We find quantitative evidence for an intimate link between the RS dependence and truncations of flow equations

    Cerebro humano y conocimiento

    Get PDF
    Si hablamos de órganos vitales vienen a la mente ejemplos tales como el corazón, responsable de que nuestra sangre circule o los pulmones, protagonistas en la respiración. Pero ¿qué hay del cerebro?, ¿sabemos realmente cuáles son sus misiones y por qué son básicas para nuestra existencia

    Device for Determining Variations in Stem Thickness of Trees

    Get PDF
    In precision agriculture, obtaining accurate information in real-time is essential when making relevant decisions; for example, to determine the hydric stress of plants, continuous monitoring of different plant variables such as stem thickness is required, since this is a very relevant indicator to define the water need. For this purpose, a low-cost prototype was developed to constantly monitor the fluctuations of the diameter of the trunk of a tree. The device has been designed so that it can acquire information autonomously with the help of a control software,. The sensitivity of the device allows measuring variations of up to 8 mm, which is considered optimal for this type of need. During the development of the prototype, the mechanical and electronic structure was designed using simulation software, considering the technical characteristics and functional requirements of the sensor, a control system and power supply. The prototype was built using a 3D printer, the mathematical model used in the control system was validated in a controlled environment presenting a percentage error of 2%, which is considered acceptable, prior to the implementation of the prototype in the field. Keywords: agriculture, water stress, log diameter, 3D model. Resumen En la agricultura de precisión la obtención de información precisa y en tiempo real es fundamental al momento de tomar decisiones relevantes; por ejemplo, para determinar el estrés hídrico de las plantas se requiere de un monitoreo continuo de diferentes variables de la planta como el grosor del tallo puesto que este es un indicador de mucha relevancia para poder definir la necesidad hídrica. Con esta finalidad se desarrolló un prototipo de bajo costo para monitorear constantemente las fluctuaciones del diámetro del tronco de un árbol, el dispositivo ha sido diseñado de manera que pueda adquirir información de forma autónoma apoyado por un software de control, la sensibilidad del dispositivo permite medir variaciones hasta de 8 mm, lo cual se considera óptimo para este tipo de necesidad. Durante el desarrollo del prototipo se diseñó la estructura mecánica y electrónica utilizando software de simulación, tomando en cuenta las características técnicas y requerimientos funcionales del sensor, del sistema de control y alimentación. El prototipo se construyó utilizando una impresora 3D, el modelo matemático utilizado en el sistema de control fue validados en un entorno controlado presentando un error porcentual del 2 %, lo cual se considera aceptable, previo a la implementación del prototipo en campo. Palabras Clave: Agricultura, Estrés hídrico, Diámetro de troco, Modelo 3D
    corecore