15,599 research outputs found

    Homological Product Codes

    Full text link
    Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most n\sqrt{n} qubits, where nn is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight nan^a for any a>0a>0. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.Comment: 49 page

    A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    Get PDF
    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years

    Schmidt Analysis of Pure-State Entanglement

    Full text link
    We examine the application of Schmidt-mode analysis to pure state entanglement. Several examples permitting exact analytic calculation of Schmidt eigenvalues and eigenfunctions are included, as well as evaluation of the associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria

    Three flavour Quark matter in chiral colour dielectric model

    Get PDF
    We investigate the properties of quark matter at finite density and temperature using the nonlinear chiral extension of Colour Dielectric Model (CCM). Assuming that the square of the meson fields devlop non- zero vacuum expectation value, the thermodynamic potential for interacting three flavour matter has been calculated. It is found that and and remain zero in the medium whereas changes in the medium. As a result, uu and dd quark masses decrease monotonically as the temperature and density of the quark matter is increased.In the present model, the deconfinement density and temperature is found to be lower compared to lattice results. We also study the behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.

    Half-Life of 14^{14}O

    Get PDF
    We have measured the half-life of 14^{14}O, a superallowed (0+→0+)(0^{+} \to 0^{+}) β\beta decay isotope. The 14^{14}O was produced by the 12^{12}C(3^{3}He,n)14^{14}O reaction using a carbon aerogel target. A low-energy ion beam of 14^{14}O was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t1/2=70.696±0.052t_{1/2} = 70.696\pm 0.052 s. This result is 1.5σ1.5\sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement.Comment: 10 pages, 5 figure

    Quantum Field Theory and Differential Geometry

    Full text link
    We introduce the historical development and physical idea behind topological Yang-Mills theory and explain how a physical framework describing subatomic physics can be used as a tool to study differential geometry. Further, we emphasize that this phenomenon demonstrates that the interrelation between physics and mathematics have come into a new stage.Comment: 29 pages, enlarged version, some typewritten mistakes have been corrected, the geometric descrition to BRST symmetry, the chain of descent equations and its application in TYM as well as an introduction to R-symmetry have been added, as required by mathematicia

    The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus

    Full text link
    We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold degeneracy is realized by two inequivalent crystalline states with a four- and two-fold degeneracy respectively. The fundamental quasihole and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a Hilbert space of dimension 2n−12^{n-1} for 2n−k2n-k holes and kk particles at fixed positions and assign each a charge ±e/4\pm e/4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using conformal field theory techniques. Numerical calculations using a model hamiltonian and a small number of particles supports the presence of a stable phase with degenerate vacua and quarter charged domain walls also away from the thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the various domain walls.Comment: 4 pages, 1 figure. Published, minor change

    27/32

    Full text link
    We show that when an N=2 SCFT flows to an N=1 SCFT via giving a mass to the adjoint chiral superfield in a vector multiplet with marginal coupling, the central charges a and c of the N=2 theory are related to those of the N=1 theory by a universal linear transformation. In the large N limit, this relationship implies that the central charges obey a_IR/a_UV=c_IR/c_UV=27/32. This gives a physical explanation to many examples of this number found in the literature, and also suggests the existence of a flow between some theories not previously thought to be connected.Comment: 3 pages. v2: references added, minor typos correcte
    • …
    corecore