Quantum codes with low-weight stabilizers known as LDPC codes have been
actively studied recently due to their simple syndrome readout circuits and
potential applications in fault-tolerant quantum computing. However, all
families of quantum LDPC codes known to this date suffer from a poor distance
scaling limited by the square-root of the code length. This is in a sharp
contrast with the classical case where good families of LDPC codes are known
that combine constant encoding rate and linear distance. Here we propose the
first family of good quantum codes with low-weight stabilizers. The new codes
have a constant encoding rate, linear distance, and stabilizers acting on at
most n qubits, where n is the code length. For comparison, all
previously known families of good quantum codes have stabilizers of linear
weight. Our proof combines two techniques: randomized constructions of good
quantum codes and the homological product operation from algebraic topology. We
conjecture that similar methods can produce good stabilizer codes with
stabilizer weight na for any a>0. Finally, we apply the homological
product to construct new small codes with low-weight stabilizers.Comment: 49 page