67 research outputs found

    From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives

    Get PDF
    In recent years, Raman spectroscopy has been more and more frequently applied to address research questions in neuroscience. As a non-destructive technique based on inelastic scattering of photons, it can be used for a wide spectrum of applications including neurooncological tumor diagnostics or analysis of misfolded protein aggregates involved in neurodegenerative diseases. Progress in the technical development of this method allows for an increasingly detailed analysis of biological samples and may therefore open new fields of applications. The goal of our review is to provide an introduction into Raman scattering, its practical usage and also commonly associated pitfalls. Furthermore, intraoperative assessment of tumor recurrence using Raman based histology images as well as the search for non-invasive ways of diagnosis in neurodegenerative diseases are discussed. Some of the applications mentioned here may serve as a basis and possibly set the course for a future use of the technique in clinical practice. Covering a broad range of content, this overview can serve not only as a quick and accessible reference tool but also provide more in-depth information on a specific subtopic of interest

    ラット静脈虚血モデ、ルにおけるペナンブラ領域でのセフトリアキソンの神経保護効果

    Get PDF
    OBJECTIVE: Glutamate transporter-1 (GLT-1) maintains low concentrations of extracellular glutamate by removing glutamate from the extracellular space. It is controversial, however, whether upregulation of GLT-1 is neuroprotective under all ischemic/hypoxic conditions. Recently, a neuroprotective effect of preconditioning with a β-lactam antibiotic ceftriaxone (CTX) that increases expression of GLT-1 has been reported in animal models of focal ischemia. On the other hand, it is said that CTX does not play a neuroprotective role in an in vitro study. Thus, we examined the effect of CTX on ischemic injury in a rat model of two-vein occlusion (2VO). This model mimics venous ischemia during, e.g. tumor surgery, a clinical situation that is best suitable for pretreatment with CTX. METHODS: CTX (100mg/kg, 200mg/kg per day) or vehicle (0.9% NaCl) was intraperitoneally injected into Wistar rats for 5days before venous ischemia (n=57). Then, animals were prepared for occlusion of two adjacent cortical veins (2VO) by photothrombosis with rose bengal that was followed by KCl-induced cortical spreading depression (CSD). Infarct volume was evaluated with hematoxylin and eosin (H&E) staining 2days after venous occlusion. [(3)H]MK-801, [(3)H]AMPA and [(3)H]Muscimol ligand binding were examined autoradiographically in additional two groups without 2VO (n=5/group). Animals were injected either with NaCl (vehicle) or CTX 200mg/kg for 5days in order to evaluate whether NMDA, AMPA and GABAA ligand binding densities were affected. RESULTS: CTX pretreatment reduced infarct volume compared to vehicle pretreatment (p<0.05). The effect of CTX pretreatment was attenuated by administration of the GLT-1 inhibitor, dihydrokainate (DHK) 30min before 2VO. CTX had no effect on the number of spontaneous spreading depressions after 2VO. Analysis of quantitative receptor autoradiography showed no statistically significant difference between rats after administration with CTX compared to control rats. CONCLUSIONS: Pretreatment with CTX has neuroprotective potential without effect on NMDA, AMPA and GABAA receptor density and spontaneous spreading depression. This effect can be abolished by GLT-1 inhibition, indicating that upregulation of GLT-1 is an important mechanism for neuroprotective action in penumbra-like conditions, e.g. if neurosurgeons plan to occlude cerebral veins during tumor surgery.博士(医学)・乙第1320号・平成25年11月27

    Neurocysticercosis with a single brain lesion in Germany: a case report

    Get PDF
    Neurocysticercosis is rare in Western Europe and a high degree of physician awareness is necessary for diagnosis. We describe a case of Neurocysticercosis with a single brain lesion acquired in Germany in which only surgical removal and subsequent histological examination allowed diagnosis whereas diagnostic investigation yielded no pathological findings

    The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective.

    Get PDF
    In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients

    Decreased hippocampal cell proliferation in mice with experimental antiphospholipid syndrome

    Full text link
    The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies, which may trigger vascular thrombosis with consecutive infarcts. However, cognitive dysfunctions representing one of the most commonest neuropsychiatric symptoms are frequently present despite the absence of any ischemic brain lesions. Data on the structural and functional basis of the neuropsychiatric symptoms are sparse. To examine the effect of APS on hippocampal neurogenesis and on white matter, we induced experimental APS (eAPS) in adult female Balb/C mice by immunization with β2-glycoprotein 1. To investigate cell proliferation in the dentate gyrus granular cell layer (DG GCL), eAPS and control mice (n = 5, each) were injected with 5-bromo-2′-deoxyuridine (BrdU) once a day for 10 subsequent days. Sixteen weeks after immunization, eAPS resulted in a significant reduction of BrdU-positive cells in the DG GCL compared to control animals. However, double staining with doublecortin and NeuN revealed a largely preserved neurogenesis. Ultrastructural analysis of corpus callosum (CC) axons in eAPS (n = 6) and control mice (n = 7) revealed no significant changes in CC axon diameter or g-ratio. In conclusion, decreased cellular proliferation in the hippocampus of eAPS mice indicates a limited regenerative potential and may represent one neuropathological substrate of cognitive changes in APS while evidence for alterations of white matter integrity is lacking. Keywords Antiphospholipid syndrome Corpus callosum g-ratio BrdU Neurogenesi

    Normal and Pathological NRF2 Signalling in the Central Nervous System

    Get PDF
    The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields

    Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns

    Get PDF
    DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism

    Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension

    Get PDF
    Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidative stress and inflammation in aortic, cardiac and/or cerebral tissues in single exposure models. In mice subjected to both stressors, most of these risk factors showed potentiated adverse changes. We also found that mice exposed to both noise and ATII had increased phagocytic NADPH oxidase (NOX-2)-mediated superoxide formation, immune cell infiltration (monocytes, neutrophils and T cells) in the aortic wall, astrocyte activation in the brain, enhanced cytokine signaling, and subsequent vascular and cerebral oxidative stress. Exaggerated renal stress response was also observed. In summary, our results show an enhanced adverse cardiovascular effect between environmental noise exposure and arterial hypertension, which is mainly triggered by vascular inflammation and oxidative stress. Mechanistically, noise potentiates neuroinflammation and cerebral oxidative stress, which may be a potential link between both risk factors. The results indicate that a combination of classical (arterial hypertension) and novel (noise exposure) risk factors may be deleterious for cardiovascular health

    Neuropathology of Experimental Antiphospholipid Syndrome (eAPS)

    Full text link
    Antibodies against phospholipids and phospholipid binding proteins (aPL) have been identified as the major drivers of clotting in the vascular system in antiphospholipid syndrome (APS). Clotting results in the ischemic damage of organs, including the central nervous system (CNS). Interestingly, APS patients also show CNS dysfunction that cannot always be attributed to ischemic events. Manifestations such as cognitive dysfunction, depression, epilepsy, and white matter abnormalities are emerging and have an impact on the quality of life. So far, the underlying mechanisms are unknown and thus, specific treatment strategies are lacking. The four publications presented herein aim to investigate an experimental animal model of APS (eAPS), where female mice develop antiphospholipid antibodies (aPL) and behavioral and cognitive abnormalities, but show no overt signs of ischemic tissue damage. In summary, eAPS mice display a mild neurodegenerative phenotype without major tissue damage but rather subtle changes including hippocampal dysfunction, hippocampal neurotransmitter receptor changes, reduction of dendritic complexity of CA1 neurons, and decreased regenerative potential in the granule cell layer of the dentate gyrus. We conclude from these results that the hippocampus seems to be the major target in eAPS. The full spectrum of changes is seen only after prolonged exposure to high titers of aPL, which indicates that a critical threshold of aPL has to be reached to lead to the disease phenotype. The experimental data further indicate an antibody/immune-mediated CNS pathology, which possibly could be controlled by treatment strategies that result in a reduction of circulating aPL in the vascular system. Such strategies may diminish the risk or even protect APS patients from developing CNS manifestations
    corecore