10 research outputs found

    Nerve Transfer for Restoration of Lower Motor Neuron-Lesioned Bladder, Urethral, and Anal Sphincter Function in a Dog Model. Part 3. Nicotinic Receptor Characterization

    Get PDF
    Very little is known about the physiological role of nicotinic receptors in canine bladders, although functional nicotinic receptors have been reported in bladders of many species. Utilizing in vitro methods, we evaluated nicotinic receptors mediating bladder function in dogs: control (9 female and 11 male normal controls, 5 sham operated), Decentralized (9 females, decentralized 6–21 mo), and obturator-to-pelvic nerve transfer reinnervated (ObNT-Reinn; 9 females; decentralized 9–13 mo, then reinnervated with 8–12 mo recovery). Muscle strips were collected, mucosa-denuded, and mounted in muscle baths before incubation with neurotransmitter antagonists, and contractions to the nicotinic receptor agonist epibatidine were determined. Strip response to epibatidine, expressed as percent potassium chloride, was similar (∼35% in controls, 30% in Decentralized, and 24% in ObNT-Reinn). Differentially, epibatidine responses in Decentralized and ObNT-Reinn bladder strips were lower than controls after tetrodotoxin (TTX, a sodium channel blocker that inhibits axonal action potentials). Yet, in all groups, epibatidine-induced strip contractions were similarly inhibited by mecamylamine and hexamethonium (ganglionic nicotinic receptor antagonists), SR 16584 (α3β4 neuronal nicotinic receptor antagonist), atracurium and tubocurarine (neuromuscular nicotinic receptor antagonists), and atropine (muscarinic receptor antagonist), indicating that nicotinic receptors (particularly α3β4 subtypes), neuromuscular and muscarinic receptors play roles in bladder contractility. In control bladder strips, since tetrodotoxin did not inhibit epibatidine contractions, nicotinic receptors are likely located on nerve terminals. The tetrodotoxin inhibition of epibatidine-induced contractions in Decentralized and ObNT-Reinn suggests a relocation of nicotinic receptors from nerve terminals to more distant axonal sites, perhaps as a compensatory mechanism to recover bladder function

    Mutation in Osteoactivin Decreases Bone Formation in Vivo and Osteoblast Differentiation in Vitro

    Get PDF
    We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb+/SjJ (D2J/Gpnmb+)]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb+ mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb+ osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-β receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-β signaling. These data confirm the anabolic role of OA in postnatal bone formation

    Determining integrity of bladder innervation and smooth muscle function 1 year after lower spinal root transection in canines.

    No full text
    AIMS: To assess bladder smooth muscle function and innervation after long-term lower spinal root transection in canines. METHODS: Thirteen female mixed-breed hound dogs underwent bladder decentralization, which included transection of all sacral dorsal and ventral roots caudal to L7 and hypogastric nerves, bilaterally (n = 3); all sacral roots and hypogastric nerves plus transection of L7 dorsal roots, bilaterally (n = 4); or a sham operation (n = 6). At a year after initial surgery, bladder function was assessed in vivo by stimulation of the pelvic plexus. The bladder tissue was harvested for ex vivo smooth muscle contractility studies. Remaining bladder was evaluated for nerve morphology immunohistochemically using neuronal marker PGP9.5, apoptotic activity using terminal deoxynucleotidyl transferase dUTP nick end labeling, and histopathology using a hematoxylin and eosin stain. RESULTS: Sacral root decentralization did not reduce maximum strength of pelvic plexus stimulation-induced bladder contraction, although long-term sacral dorsal and ventral root plus L7 dorsal root transection significantly decreased contraction strength. Electric field stimulation-induced contractions of the detrusor from all decentralized animals were preserved, compared to controls. Viable nerves and intramural ganglia were visualized in the bladder wall, regardless of group. There was no difference in amount of apoptosis in bladder smooth muscle between groups. CONCLUSION: Bladder smooth muscle cells maintain their function after long-term bladder decentralization. While pelvic plexus-induced bladder contractions were less robust at 1 year after lower spinal root transection, the absence of atrophy and preservation of at least some nerve activity may allow for successful surgical reinnervation after long-term injury

    Poor sleep versus exercise: A duel to decide whether pain resolves or persists after injury

    No full text
    Poor sleep is thought to enhance pain via increasing peripheral and/or central sensitization. Aerobic exercise, conversely, relives pain via reducing sensitization, among other mechanisms. This raises two clinical questions: (1) does poor sleep contribute to the transition from acute-to-persistent pain, and (2) can exercise protect against this transition? This study tested these questions and explored underlying mechanisms in a controlled injury model. Twenty-nine adult female Sprague-Dawley rats performed an intensive lever-pulling task for 4 weeks to induce symptoms consistent with clinical acute-onset overuse injury. Rats were then divided into three groups and exposed for 4 weeks to either: voluntary exercise via access to a running wheel, sleep disturbance, or both. Pain-related behaviours (forepaw mechanical sensitivity, reflexive grip strength), systemic levels of brain derived neurotrophic factor (BDNF), estradiol and corticosterone, and white blood cells (WBC) were assessed pre-injury, post-injury and post-intervention. Mechanical sensitivity increased post-injury and remained elevated with sleep disturbance alone, but decreased to pre-injury levels with exercise both with and without sleep disturbance. Reflexive grip strength decreased post-injury but recovered post-intervention—more with exercise than sleep disturbance. BDNF increased with sleep disturbance alone, remained at pre-injury levels with exercise regardless of sleep, and correlated with mechanical sensitivity. WBCs and estradiol increased with exercise alone and together with sleep disturbance, respectively. Corticosterone was not impacted by injury/intervention. Findings provide preliminary evidence for a role of poor sleep in the transition from acute-to-persistent pain, and the potential for aerobic exercise to counter these effects. BDNF might have a role in these relationships

    Nerve transfer for restoration of lower motor neuron-lesioned bladder and urethra function: establishment of a canine model and interim pilot study results.

    No full text
    OBJECTIVE: Previous patient surveys have shown that patients with spinal cord or cauda equina injuries prioritize recovery of bladder function. The authors sought to determine if nerve transfer after long-term decentralization restores bladder and sphincter function in canines. METHODS: Twenty-four female canines were included in this study. Transection of sacral roots and hypogastric nerves (S Dec) was performed in 6 animals, and 7 animals underwent this procedure with additional transection of the L7 dorsal roots (L7d+S Dec). Twelve months later, 3 L7d+S Dec animals underwent obturator-to-pelvic nerve and sciatic-to-pudendal nerve transfers (L7d+S Dec+Reinn). Eleven animals served as controls. Squat-and-void behaviors were tracked before and after decentralization, after reinnervation, and following awake bladder-filling procedures. Bladders were cystoscopically injected with Fluoro-Gold 3 weeks before euthanasia. Immediately before euthanasia, transferred nerves were stimulated to evaluate motor function. Dorsal root ganglia were assessed for retrogradely labeled neurons. RESULTS: Transection of only sacral roots failed to reduce squat-and-void postures; L7 dorsal root transection was necessary for significant reduction. Three L7d+S Dec animals showing loss of squat-and-void postures post-decentralization were chosen for reinnervation and recovered these postures 4-6 months after reinnervation. Each showed obturator nerve stimulation-induced bladder contractions and sciatic nerve stimulation-induced anal sphincter contractions immediately prior to euthanasia. One showed sciatic nerve stimulation-induced external urethral sphincter contractions and voluntarily voided twice following nonanesthetized bladder filling. Reinnervation was confirmed by increased labeled cells in L2 and the L4-6 dorsal root ganglia (source of obturator nerve in canines) of L7d+S Dec+Reinn animals, compared with controls. CONCLUSIONS: New neuronal pathways created by nerve transfer can restore bladder sensation and motor function in lower motor neuron-lesioned canines even 12 months after decentralization

    Nerve transfer for restoration of lower motor neuron-lesioned bladder function. Part 1: attenuation of purinergic bladder smooth muscle contractions.

    No full text
    This study determined the effect of pelvic organ decentralization and reinnervation 1 yr later on the contribution of muscarinic and purinergic receptors to ex vivo, nerve-evoked, bladder smooth muscle contractions. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, 8 were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Controls included six sham-operated and three unoperated animals. Detrusor muscle was assessed for contractile responses to potassium chloride (KCl) and electric field stimulation (EFS) before and after purinergic receptor desensitization with α, β-methylene adenosine triphosphate (α,β-mATP), muscarinic receptor antagonism with atropine, or sodium channel blockade with tetrodotoxin. Atropine inhibition of EFS-induced contractions increased in decentralized and reinnervated animals compared with controls. Maximal contractile responses to α,β-mATP did not differ between groups. In strips from decentralized and reinnervated animals, the contractile response to EFS was enhanced at lower frequencies compared with normal controls. The observation of increased blockade of nerve-evoked contractions by muscarinic antagonist with no change in responsiveness to purinergic agonist suggests either decreased ATP release or increased ecto-ATPase activity in detrusor muscle as a consequence of the long-term decentralization. The reduction in the frequency required to produce maximum contraction following decentralization may be due to enhanced nerve sensitivity to EFS or a change in the effectiveness of the neurotransmission

    Nerve transfer for restoration of lower motor neuron-lesioned bladder function. Part 2: correlation between histological changes and nerve evoked contractions.

    No full text
    We determined the effect of pelvic organ decentralization and reinnervation 1 yr later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, eight were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1-S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher compared with decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, and pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1-L6 roots compared with their transected L7-S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at 1 yr after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function
    corecore