96 research outputs found

    Theoretical structural insights into the snakin/GASA family

    Get PDF
    AbstractAmong the main classes of cysteine-stabilized antimicrobial peptides, the snakin/GASA family has not yet had any structural characterization. Through the combination of ab initio and comparative modeling with a disulfide bond predictor, the three-dimensional structure prediction of snakin-1 is reported here. The structure was composed of two long α-helices with a disulfide pattern of CysI-CysIX, CysII-CysVII, CysIII-CysIV, CysV-CysXI, CysVI-CysXII and CysVIII-CysX. The overall structure was maintained throughout molecular dynamics simulation. Snakin-1 showed a small degree of structural similarity with thionins and α-helical hairpins. This is the first report of snakin-1 structural characterization, shedding some light on the snakin/GASA family

    In vivo antimicrobial evaluation of an alanine-rich peptide derived from Pleuronectes americanus

    Get PDF
    AbstractIn several organisms, the first barrier against microbial infections consists of antimicrobial peptides (AMPs) which are molecules that act as components of the innate immune system. Recent studies have demonstrated that AMPs can perform various functions in different tissues or physiological conditions. In this view, this study was carried out in order to evaluate the multifunctional activity in vivo of an alanine-rich peptide, known as Pa-MAP, derived from the polar fish Pleuronectes americanus. Pa-MAP was evaluated in intraperitoneally infected mice with a sub-lethal concentration of Escherichia coli at standard concentrations of 1 and 5mgkg−1. At both concentrations, Pa-MAPs exhibited an ability to prevent E. coli infection and increase mice survival, similar to the result observed in mice treated with ampicillin at 2mgkg−1. In addition, mice were monitored for weight loss. The results showed that mice treated with Pa-MAPs at 1mgkg−1 gained 0.8% of body weight during the 72h of experiment. The same was observed with Pa-MAP at 5mgkg−1, which had a gain of 0.5% in body weight during the treatment. Mice treated with ampicillin at 2mgkg−1 show a significant weight loss of 5.6% of body weight. The untreated group exhibited a 5.5% loss of body weight. The immunomodulatory effects were also evaluated by the quantification of IL-10, IL-12, TNF-α, IFN-γ and nitric oxide cytokines in serum, but no immunomodulatory activity was observed. Data presented here suggest that Pa-MAP should be used as a novel antibiotic against infection control

    Effects of acute aerobic exercise on rats serum extracellular vesicles diameter, concentration and small RNAs content

    Get PDF
    Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 1033p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise

    Geometric deep learning as a potential tool for antimicrobial peptide prediction

    Get PDF
    Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field

    Structural studies of a lipid-binding peptide from tunicate hemocytes with anti-biofilm activity

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function.We would like to thank CNPq, CAPES (Ciências sem Fronteiras), FAPDF and FUNDECT. D.G. acknowledges Fundação para a Ciência e a Tecnologia - Ministério da Educação e Ciência (FCT-MEC, Portugal) for fellowship SFRH/BPD/73500/2010 and A.S.V. for funding within the FCT Investigator Programme (IF/00803/2012).info:eu-repo/semantics/publishedVersio

    Effects of endurance racing on horse plasma extracellular particle miRNA

    Get PDF
    Background: Physical exercise is an essential factor in preventing and treating metabolic diseases by promoting systemic benefits throughout the body. The molecular factors involved in this process are poorly understood. Micro RNAs (miRNAs) are small non-coding RNAs that inhibit mRNA transcription. MiRNAs, which can participate in the benefits of exercise to health, circulate in plasma in extracellular particles (EP). Horses that undergo endurance racing are an excellent model to study the impact of long-duration/low intensity exercise in plasma EP miRNAs. Objectives: To evaluate the effects of 160 km endurance racing on horse plasma extracellular particles and their miRNA population. Study design: Cohort study. Methods: We collected plasma from five Arabian horses during five time-points of an endurance ride. Extracellular particles were purified from plasma and characterised by electron microscopy, resistive pulse sensing (qNano) and western blotting. Small RNAs were purified from horse plasma EP, and sequencing was performed. Results: Endurance racing increased EP concentration and average diameter compared to before the race. Western blotting showed a high concentration of extracellular vesicles proteins 2 hours after the race, which returned to baseline 15 hours after the race. MicroRNA differential expression analysis revealed increasing levels of eca-miR-486-5p during and after the race, and decreasing levels of eca-miR-9083 after the end. Conclusions: This study adds new data about the variation in plasma EP concentrations after long-distance exercise and brings new insights about the roles of exercise-derived EP miRNAs during low-intensity endurance exercise
    • …
    corecore