67 research outputs found

    Effect of HIV infection on the acute antibody response to malaria antigens in children: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sub-Saharan Africa, the distributions of malaria and HIV widely overlap. Among pregnant and non-pregnant adults, HIV affects susceptibility to malaria, its clinical course and impairs antibody responses to malaria antigens. However, the relationship between the two diseases in childhood, when most deaths from malaria occur, is less clear. It was previously reported that HIV is associated with admission to hospital in rural Kenya with severe malaria among children, except in infancy. HIV-infected children with severe malaria were older, had higher parasite density and increased mortality, raising a hypothesis that HIV interferes with naturally acquired immunity to malaria, hence with little effect at younger ages (a shorter history of exposure). To test this hypothesis, levels of anti-merozoite and schizont extract antibodies were compared between HIV-infected and uninfected children who participated in the original study.</p> <p>Methods</p> <p>IgG responses to malaria antigens that are potential targets for immunity to malaria (AMA1, MSP2, MSP3 and schizont extract) were compared between 115 HIV-infected and 115 age-matched, HIV-uninfected children who presented with severe malaria. The children were classified as high and low responders for each antigen and assigned antibody-response breadth scores according to the number of antigens to which they were responsive. A predictive logistic regression model was used to test if HIV was an effect modifier on the age-related acquisition of antibody responses, with age as a continuous variable.</p> <p>Results</p> <p>Point estimates of the responses to all antigens were lower amongst HIV-infected children, but this was only statistically significant for AMA1 (P = 0.028). HIV-infected children were less likely to be high responders to AMA1 [OR 0.44 (95%CI, 0.2-0.90) P = 0.024]. HIV was associated with a reduced breadth of responses to individual merozoite antigens (P = 0.02). HIV strongly modified the acquisition of antibodies against schizont extract with increasing age (P < 0.0001), but did not modify the rate of age-related acquisition of responses to individual merozoite antigens.</p> <p>Conclusions</p> <p>In children with severe malaria, HIV infection is associated with a lower magnitude and narrower breadth of IgG responses to merozoite antigens and stunting of age-related acquisition of the IgG antibody response to schizont extract.</p

    The impact of malaria parasites on dendritic cell–T cell interaction

    Get PDF
    Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection continues to pose a risk for the majority of the global population, the burden of disease mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this requires years of persistent exposure and is not associated with protection against infection. Repeat infections occur due to the parasite's ability to disrupt or evade the host immune responses. However, despite many years of study, the mechanisms of this disruption remain unclear. Previous studies have demonstrated a parasite-induced failure in dendritic cell (DCs) function affecting the generation of helper T cell responses. These T cells fail to help B cell responses, reducing the production of antibodies that are necessary to control malaria infection. This review focuses on our current understanding of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell activation. A better understanding of how parasites disrupt DC-T cell interactions will lead to new targets and approaches to reinstate adaptive immune responses and enhance parasite immunity

    Correlations between three ELISA protocols measurements of RTS,S/AS01-induced anti-CSP IgG antibodies

    Get PDF
    Background RTS,S/AS01 induced anti-circumsporozoite protein (CSP) IgG antibodies are associated with the vaccine efficacy. There is currently no international standardisation of the assays used in the measurement of anti-CSP IgG antibody concentrations for use in evaluations of the vaccine’s immunogenicity and/or efficacy. Here, we compared the levels of RTS,S/AS01 induced anti-CSP IgG antibodies measured using three different enzyme-Linked ImmunoSorbent Assays (ELISA). Methods 196 plasma samples were randomly selected from the 447 samples collected during the RTS,S/AS01 phase IIb trial in 2007 from Kenyan children aged between 5–17 months. The vaccine-induced anti-CSP IgG antibodies were then measured using two independently developed ELISA protocols (‘Kilifi-RTS,S’ and ‘Oxford-R21’) and compared to the results from the reference ‘Ghent-RTS,S’ protocol for the same participants. For each pair of protocols, a deming regression model was fitted. Linear equations were then derived to aid in conversions into equivalent ELISA units. The agreement was assessed using Bland and Altman method. Findings The anti-CSP IgG antibodies measured from the three ELISA protocols were in agreement, and were positively and linearly correlated; ‘Oxford’ and ‘Kilifi’ r = 0.93 (95% CI 0.91–0.95), ‘Oxford’ and ‘Ghent’ r = 0.94 (95% CI: 0.92–0.96), and ‘Kilifi’ and ‘Ghent’ r = 0.97 (95% CI: 0.96–0.98), p<0.0001 for all correlations. Conclusions With the linearity, agreement and correlations established between the assays, conversion equations can be applied to convert results into equivalent units, enabling comparisons of immunogenicities across different vaccines of the same CSP antigens. This study highlights the need for the international harmonisation of anti-CSP antibody measurements

    Avidity of anti-circumsporozoite antibodies following vaccination with RTS,S/AS01(E) in young children

    Get PDF
    Background: The nature of protective immune responses elicited by immunization with the candidate malaria vaccine RTS, S is still incompletely understood. Antibody levels correlate with protection against malaria infection, but considerable variation in outcome is unexplained (e.g., children may experience malaria despite high anticircumsporozoite [CS] titers). Methods and Findings: We measured the avidity index (AI) of the anti-CS antibodies raised in subgroup of 5-17 month old children in Kenya who were vaccinated with three doses of RTS, S/AS01(E) between March and August 2007. We evaluated the association between the AI and the subsequent risk of clinical malaria. We selected 19 cases (i.e., with clinical malaria) and 42 controls (i.e., without clinical malaria), matching for anti-CS antibody levels and malaria exposure. We assessed their sera collected 1 month after the third dose of the vaccine, in March 2008 (range 4-10 months after the third vaccine), and at 12 months after the third vaccine dose. The mean AI was 45.2 (95% CI: 42.4 to 48.1), 45.3 (95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3) at 1 month, in March 2008 (4-10 months), and at 12 months after the third vaccination, respectively (p=0.9 by ANOVA test for variation over time). The AI was not associated with protection from clinical malaria (OR=0.90; 95% CI: 0.49 to 1.66; p=0.74). The AI was higher in children with high malaria exposure, as measured using the weighted local prevalence of malaria, compared to those with low malaria exposure at 1 month post dose 3 (p=0.035). Conclusion: Our data suggest that in RTS, S/AS01(E)-vaccinated children residing in malaria endemic countries, the avidity of anti-circumsporozoite antibodies, as measured using an elution ELISA method, was not associated with protection from clinical malaria. Prior natural malaria exposure might have primed the response to RTS, S/AS01(E) vaccination

    A seven-year study on the effect of the pre-erythrocytic malaria vaccine candidate RTS,S/AS01 E on blood stage immunity in young Kenyan children.

    Get PDF
    Background: RTS,S/AS01 E, the most advanced malaria vaccine confers partial immunity. The vaccine-induced pre-erythrocytic immunity reduces exposure to blood-stage parasites, delaying acquisition of antibodies to blood-stage antigens.  However, the duration of this effect is unknown. Methods: We measured, by enzyme-linked immunosorbent assay, IgG-antibodies to 4 Plasmodium falciparum blood-stage antigens (AMA1, MSP1 42, EBA175, and MSP3) on 314 children randomized to receive RTS,S/AS01 E or Rabies vaccine at 5 - 17 months of age in a phase 2b trial in Kenya, and thereafter participated in a 7-year study of the duration of vaccine immunity. Results: Antibody levels to MSP1 42, AMA1 and EBA175 were slightly lower among the RTS,S/AS01 E recipients, relative to the Rabies-control vaccinees, during the first 48 months of surveillance. Irrespective of vaccine arm, antibody levels to merozoite antigens were positively associated with the risk for malaria. However, this was only apparent at high levels for EBA175 and AMA1 and was not evident after adjusting for heterogeneity in malaria-exposure. Among children with asymptomatic parasitaemia, antibody levels were associated with reduced clinical malaria. Conclusions: The reduction in levels of antibodies to blood-stage antigens induced by vaccination with RTS,S/AS01 E can last for several years. In absence of asymptomatic infection, anti-merozoite antibody levels were unreliable correlates of clinical immunity

    Iron Status and Associated Malaria Risk Among African Children.

    Get PDF
    BACKGROUND: It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS: We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS: At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS: ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION: ISRCTN32849447

    Estimating the burden of iron deficiency among African children.

    Get PDF
    BACKGROUND: Iron deficiency (ID) is a major public health burden in African children and accurate prevalence estimates are important for effective nutritional interventions. However, ID may be incorrectly estimated in Africa because most measures of iron status are altered by inflammation and infections such as malaria. Through the current study, we have assessed different approaches to the prediction of iron status and estimated the burden of ID in African children. METHODS: We assayed iron and inflammatory biomarkers in 4853 children aged 0-8?years from Kenya, Uganda, Burkina Faso, South Africa, and The Gambia. We described iron status and its relationship with age, sex, inflammation, and malaria parasitemia. We defined ID using the WHO guideline (ferritin <?12??g/L or <?30??g/L in the presence of inflammation in children <?5?years old or <?15??g/L in children ??5?years old). We compared this with a recently proposed gold standard, which uses regression-correction for ferritin levels based on the relationship between ferritin levels, inflammatory markers, and malaria. We further investigated the utility of other iron biomarkers in predicting ID using the inflammation and malaria regression-corrected estimate as a gold standard. RESULTS: The prevalence of ID was highest at 1 year of age and in male infants. Inflammation and malaria parasitemia were associated with all iron biomarkers, although transferrin saturation was least affected. Overall prevalence of WHO-defined ID was 34% compared to 52% using the inflammation and malaria regression-corrected estimate. This unidentified burden of ID increased with age and was highest in countries with high prevalence of inflammation and malaria, where up to a quarter of iron-deficient children were misclassified as iron replete. Transferrin saturation <?11% most closely predicted the prevalence of ID according to the regression-correction gold standard. CONCLUSIONS: The prevalence of ID is underestimated in African children when defined using the WHO guidelines, especially in malaria-endemic populations, and the use of transferrin saturation may provide a more accurate approach. Further research is needed to identify the most accurate measures for determining the prevalence of ID in sub-Saharan Africa

    Repeated clinical malaria episodes are associated with modification of the immune system in children

    Get PDF
    The study received funding from the UK Medical Research Council, (MRC Programme grant #: MR/M003906/1). MB and AR are supported by the Wellcome Trust (Grant #: WT 206194).Background There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. Methods We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). Results We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. Conclusion Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.Publisher PDFPeer reviewe

    Distinct Kinetics of Memory B-Cell and Plasma-Cell Responses in Peripheral Blood Following a Blood-Stage Plasmodium chabaudi Infection in Mice

    Get PDF
    B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD− IgM− CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood
    corecore