26 research outputs found
Подбор оборудования для эксплуатации скважин в условиях активного выноса песка на нефтяных месторождениях Западной Сибири
Цель работы – анализ известных представлений по проблеме пескопроявления в процессе эксплуатации скважин; анализ технологических и технических решений для борьбы с пескопроявлением. В результате даны рекомендации по использованию того или иного оборудования для получения наилучшего эффекта. Область применения: скважины, характеризующиеся высоким количеством песчаных частиц в извлекаемом флюиде, а также скважины, вскрывающие слабосцементированные песчаные породы.The purpose of the work is the analysis of well-known ideas on the problem of sand occurrence during the operation of wells; analysis of technologies and technical solutions for sand control.
For the best effect. Scope: wells characterized by a high content of sand particles in the recovered fluid, as well as wells revealing weakly cemented sand formations
Defining the functional binding sites of interleukin 12 receptor beta 1 and interleukin 23 receptor to Janus kinases
The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor beta 1 (IL-12R beta 1) as one component of their receptor signaling complexes, with IL-12R beta 2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12R beta 1, whereas Jak2 binds to IL-23R and also to IL-12R beta 2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12R beta 1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12R beta 1 and Jak2 by IL-23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable
Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody
P>The use of vaginal microbicides containing human immunodeficiency virus (HIV)-neutralizing antibodies (nAbs) is a promising strategy to prevent HIV-1 infection. Although antibodies are predominantly manufactured using mammalian cells, elastin-like peptide (ELP) fusion technology improves the stability of recombinant, plant-produced proteins and facilitates their purification, making plants an alternative platform for antibody production. We generated transgenic tobacco plants accumulating four different formats of the anti-HIV-1 antibody 2G12 in the endoplasmic reticulum (ER), i.e. with ELP on either the light or heavy chain, on both, or on neither. Detailed analysis of affinity-purified antibodies by surface plasmon resonance spectroscopy showed that the kinetic binding parameters of all formats were identical to 2G12 lacking ELP produced in Chinese hamster ovary (CHO) cells. Importantly, protein purification from seeds by inverse transition cycling (ITC) did not affect the binding kinetics. Analysis of heavy chain N-glycans from leaf-derived antibodies showed that retrieval to the ER was efficient for all formats. In seeds, however, N-glycans on the naked antibody were extensively trimmed compared with those on the ELP fusion formats, and were localized to a different subcellular compartment. The in vitro HIV-neutralization properties of the tobacco-derived 2G12 were equivalent to or better than those of the CHO counterpart
Transgenic Production of an Anti HIV Antibody in the Barley Endosperm
Barley is an attractive vehicle for producing recombinant protein, since it is a readily transformable diploid crop species in which doubled haploids can be routinely generated. High amounts of protein are naturally accumulated in the grain, but optimal endosperm-specific promoters have yet to be perfected. Here, the oat GLOBULIN1 promoter was combined with the legumin B4 (LeB4) signal peptide and the endoplasmic reticulum (ER) retention signal (SE)KDEL. Transgenic barley grain accumulated up to 1.2 g/kg dry weight of recombinant protein (GFP), deposited in small roundish compartments assumed to be ER-derived protein bodies. The molecular farming potential of the system was tested by generating doubled haploid transgenic lines engineered to synthesize the anti-HIV-1 monoclonal antibody 2G12 with up to 160 μg recombinant protein per g grain. The recombinant protein was deposited at the periphery of protein bodies in the form of a mixture of various N-glycans (notably those lacking terminal N-acetylglucosamine residues), consistent with their vacuolar localization. Inspection of protein-A purified antibodies using surface plasmon resonance spectroscopy showed that their equilibrium and kinetic rate constants were comparable to those associated with recombinant 2G12 synthesized in Chinese hamster ovary cells
Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies
Respiratory syncytial virus–approved mAb Palivizumab as ligand for anti-idiotype nanobody-based synthetic cytokine receptors
Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus–approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy