29 research outputs found

    Fluctuations, Saturation, and Diffractive Excitation at low x

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good-Walker formalism the cross section is determined by the fluctuations in the interaction. By taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation in the Good-Walker formalism. In high energy pp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 4 pages, proceedings from Diffraction 201

    Quasielastic Scattering in the Dipole Model

    Full text link
    A series of previous papers develops a dipole model in initial state impact parameter space that includes subleading effects such as running alpha strong, unitarity, confinement and saturation. Here some recent work is presented, where the model is applied to a new set of data: vector meson production in photon-proton, DVCS and t-dependence in elastic proton-proton collisions. This allows us to tune a more realistic model of the proton wavefunction from the pp data, and confirm the predictive power of the model in high Q2 of DVCS and vector meson production. For low Q2 vector meson resonances dominate the photon wavefunction, making our predictions depend on a tuned parametrisation in this range.Comment: Published in Proceedings of the 38th International Symposium on Multiparticle Dynamics (ISMD08

    Exclusive final states in diffractive excitation

    Full text link
    In this paper we describe a formalism for generating exclusive final states in diffractive excitation, based on the optical analogy where diffraction is fully determined by the absorption into inelastic channels. The formalism is based on the Good--Walker formalism for diffractive excitation, and it is assumed that the virtual parton cascades represent the diffractive eigenstates defined by a definite absorption amplitude. We emphasize that, although diffractive excitation is basically a quantum-mechanical phenomenon with strong interference effects, it is possible to calculate the different interfering components to the amplitude in an event generator, add them and thus calculate the reaction cross section for exclusive diffractive final states. The formalism is implemented in the DIPSY event generator, introducing no tunable parameters beyond what has been determined previously in studies of non-diffractive events. Some early results from DIS and proton-proton collisions are presented, and compared to experimental data

    SuperFreq: Integrated mutation detection and clonal tracking in cancer.

    Get PDF
    Analysing multiple cancer samples from an individual patient can provide insight into the way the disease evolves. Monitoring the expansion and contraction of distinct clones helps to reveal the mutations that initiate the disease and those that drive progression. Existing approaches for clonal tracking from sequencing data typically require the user to combine multiple tools that are not purpose-built for this task. Furthermore, most methods require a matched normal (non-tumour) sample, which limits the scope of application. We developed SuperFreq, a cancer exome sequencing analysis pipeline that integrates identification of somatic single nucleotide variants (SNVs) and copy number alterations (CNAs) and clonal tracking for both. SuperFreq does not require a matched normal and instead relies on unrelated controls. When analysing multiple samples from a single patient, SuperFreq cross checks variant calls to improve clonal tracking, which helps to separate somatic from germline variants, and to resolve overlapping CNA calls. To demonstrate our software we analysed 304 cancer-normal exome samples across 33 cancer types in The Cancer Genome Atlas (TCGA) and evaluated the quality of the SNV and CNA calls. We simulated clonal evolution through in silico mixing of cancer and normal samples in known proportion. We found that SuperFreq identified 93% of clones with a cellular fraction of at least 50% and mutations were assigned to the correct clone with high recall and precision. In addition, SuperFreq maintained a similar level of performance for most aspects of the analysis when run without a matched normal. SuperFreq is highly versatile and can be applied in many different experimental settings for the analysis of exomes and other capture libraries. We demonstrate an application of SuperFreq to leukaemia patients with diagnosis and relapse samples

    Eccentricity and elliptic flow in proton-proton collisions from parton evolution

    Get PDF
    It has been argued that high-multiplicity proton-proton collisions at the LHC may exhibit collective phenomena usually studied in the context of heavy-ion collisions, such as elliptic flow. We study this issue using DIPSY - a Monte Carlo event generator based on the QCD dipole model. We calculate the eccentricity of the transverse area defined by the spatial distribution of produced gluons. The resulting elliptic flow is estimated to be about 6%, comparable to the value in nucleus-nucleus collisions at RHIC and the LHC. Experimentally, elliptic flow is inferred from the azimuthal correlation between hadrons, which receives contributions from collective flow, and from various other effects referred to as "nonflow". We discuss how to identify in experiments the signal of flow in the presence of large nonflow effects.Comment: v2: Four-particle correlation added, improved discussions on the signatures of flow. v3: Improved treatment of fluctuations in the flow analysis. v4: Minor changes for journal submissio

    Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good--Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good--Walker mechanism. In high energy pppp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pppp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure

    Elastic and quasi-elastic pppp and γp\gamma^\star p scattering in the Dipole Model

    Full text link
    We have in earlier papers presented an extension of Mueller's dipole cascade model, which includes sub-leading effects from energy conservation and running coupling as well as colour suppressed saturation effects from pomeron loops via a ``dipole swing''. The model was applied to describe the total and diffractive cross sections in pppp and γp\gamma^*p collisions, and also the elastic cross section in pppp scattering. In this paper we extend the model to describe the corresponding quasi-elastic cross sections in γp\gamma^*p, namely the exclusive production of vector mesons and deeply virtual compton scattering. Also for these reactions we find a good agrement with measured cross sections. In addition we obtain a reasonable description of the tt-dependence of the elastic pppp and quasi-elastic γp\gamma^\star p cross sections
    corecore