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Abstract

Analysing multiple cancer samples from an individual patient can provide insight into the

way the disease evolves. Monitoring the expansion and contraction of distinct clones helps

to reveal the mutations that initiate the disease and those that drive progression. Existing

approaches for clonal tracking from sequencing data typically require the user to combine

multiple tools that are not purpose-built for this task. Furthermore, most methods require a

matched normal (non-tumour) sample, which limits the scope of application. We developed

SuperFreq, a cancer exome sequencing analysis pipeline that integrates identification of

somatic single nucleotide variants (SNVs) and copy number alterations (CNAs) and clonal

tracking for both. SuperFreq does not require a matched normal and instead relies on unre-

lated controls. When analysing multiple samples from a single patient, SuperFreq cross

checks variant calls to improve clonal tracking, which helps to separate somatic from germ-

line variants, and to resolve overlapping CNA calls. To demonstrate our software we ana-

lysed 304 cancer-normal exome samples across 33 cancer types in The Cancer Genome

Atlas (TCGA) and evaluated the quality of the SNV and CNA calls. We simulated clonal evo-

lution through in silico mixing of cancer and normal samples in known proportion. We found

that SuperFreq identified 93% of clones with a cellular fraction of at least 50% and mutations

were assigned to the correct clone with high recall and precision. In addition, SuperFreq

maintained a similar level of performance for most aspects of the analysis when run without

a matched normal. SuperFreq is highly versatile and can be applied in many different experi-

mental settings for the analysis of exomes and other capture libraries. We demonstrate an

application of SuperFreq to leukaemia patients with diagnosis and relapse samples.

Author summary

Cancer is a disease that continues to evolve. Understanding how it changes can provide

key biological insights; for example, it can help to identify recurrent patterns associated

with therapy resistance. However, tracking clonal evolution in a cancer from sequencing

data is a major analytical challenge. We have developed SuperFreq, an analysis framework

purpose built for the detection of intra-tumoural heterogeneity and clonal evolution.
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SuperFreq encapsulates mutation detection, quality assessment, clonal tracking and phy-

logeny, for both point mutations and copy number alterations. To demonstrate the major

advance that SuperFreq offers, we developed a test dataset with engineered clones, made

by blending data from cancer and normal samples from The Cancer Genome Atlas. We

demonstrate that SuperFreq exhibits robust performance, both for detecting clones and

for assigning mutations to clones. SuperFreq is a powerful and adaptable analysis frame-

work that can be applied to address many research questions. We include an example

application, where we identify both early and relapse-specific driver mutations in an acute

myeloid leukaemia.

This is a PLOS Computational Biology Methods paper.

Introduction

Tracking clonal evolution within a cancer can reveal a wealth of information. In a clinical set-

ting it can help detect the cause of relapse or drug resistance, identify early driver mutations, or

track the course of metastasis [1–5]. Tracking mutations across multiple samples can also be

highly informative in a research setting, including animal models of cancer, xenografts and cell

lines, which often involves comparing samples over time, or across experimental conditions.

A typical analysis of multiple cancer samples from the same individual involves calling and

annotating somatic single nucleotide variants (SNVs) (using methods such as multiSNV [6],

VarScan 2 [7], MuTect [8], SomaticSniper [9] and Strelka [10]) and copy number alterations

(CNAs) (using methods such as Sequenza [11], PureCN [12] and ABSOLUTE [13]), then com-

bining the calls within a dedicated clonal tracker (using methods such as PhyloWGS [14], Sci-

Clone [15] and PyClone [16]). The analysis will cluster mutations and produce a phylogeny,

which reflects the relationship between different clones in the cancer. This multi-step process

works well for an experienced user, but is sensitive to data quality issues and parameter

choices. In addition, somatic SNV and CNA callers are not optimized for downstream use in

clonal tracking, which makes the process of preparing the input for the clonal tracking chal-

lenging. While there are software packages that perform parts of this analysis, there is currently

no integrated software that covers the entire process.

In order to address this challenge we have developed SuperFreq, a software that identifies

somatic SNVs and CNAs, annotates and prioritises variants, and performs clonal tracking.

SuperFreq can be used to analyse individual samples or matched samples taken over a treat-

ment course, or from multiple sites, and is not reliant on a matched normal. We demonstrate

the performance of SuperFreq by comparing it to specialised state of the art software for each

step of the pipeline. We developed a complex simulation in which SuperFreq was used to per-

form clonal tracking on samples designed to mimic a multi-sample analysis. Finally we provide

a case study in which SuperFreq was used for multi-sample clonal tracking using exome data

from a patient with acute myeloid leukaemia (AML).

Results

SuperFreq overview

SuperFreq is an integrated analysis pipeline for cancer exomes that calls and tracks somatic

point mutations and copy number alterations to reconstruct the clonal architecture of the
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disease. The SuperFreq workflow is presented in Fig 1, the input files are BAM files for test

samples and reference normals, together with liberal variant calls for test samples. The outputs

are annotated variant calls, including rare germline and somatic SNVs, absolute and allele

aware CNAs, and clonal tracking. A major strength of SuperFreq is that it integrates many

analysis components–mutation calling, quality assessment, variant annotation and clonal

tracking–that are normally run separately. Combining these analytical approaches within one

pipeline has major benefits in terms of the ease-of-use, but it also helps to improve the analysis,

for example by allowing consistent handling of error estimates and cross checking mutation

calls between samples. SuperFreq is unique in its integrated approach and as such it is impossi-

ble to benchmark with other software (Table 1). Instead we provide a detailed assessment of

individual components within the pipeline, such as the ability to detect somatic SNVs and

CNAs, and to reconstructing clonal architecture.

Test datasets and simulation

To provide a comprehensive sample set, we randomly selected 10 cancer-normal pairs of

exomes from each of the 33 cancer types included in The Cancer Genome Atlas (TCGA) and

downloaded the hg38 BAM files and somatic SNV calls in VCF format from the Genomics

Data Commons (GDC). A total of 26 files failed to download, because they were later excluded

from the TCGA analysis, so we also excluded these cases, restricting our assessment to 304

donors. For each exome capture platform 10 reference normals were also selected, with a total

of 60 reference normals used across all 33 cancer types. Details of the samples can be found

together with the supporting information provided to allow reproduction of the figures. We

acquired CNA calls from ASCAT [17] on the matched SNP-arrays, ABSOLUTE [13] ploidies

and purities from exomes and performed CNA calling on the exomes using Sequenza [11].

Simulations were performed to assess the influence of tumour purity and to generate a truth

Fig 1. The SuperFreq workflow. The input is aligned BAM files from the samples under study, and at least 2 reference

normals (5–10 recommended, see methods), as well as liberal variant calls. SuperFreq filters the preliminary SNVs for

artefacts using quality scores in the BAM file, and through comparison to the reference normals. Somatic SNVs are

called from the remaining variants, while heterozygous germline SNPs are identified for CNA calling. CNAs are

identified based on differences in coverage and detecting shifts in allele frequency at heterozygous germline SNPs.

Finally, somatic SNVs and CNAs are analysed across samples to designate and track clones.

https://doi.org/10.1371/journal.pcbi.1007603.g001
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dataset for clonal tracking. To do this we performed in silico dilution and slicing, where reads

from a cancer were substituted with those from its matched normal, either across the entire

genome (dilution) or in specific intervals (slicing). This dataset provided a challenging test for

clonal tracking, but is more representative of an analysis a user might face.

Somatic SNVs

We compared the somatic SNVs identified by SuperFreq on cancer-normal pairs to calls avail-

able through the Genomics Data Commons generated with MuSE [18], SomaticSniper [9],

MuTect2 [8] and Varscan2 [7]. In particular, we aim to minimise our false positive calls, as they

can severely impact the downstream clonal tracking. First, the calls from each variant caller were

compared to the consensus calls from the other four methods. SuperFreq detected a median of

91% of variants that were called by the other four callers across the 304 randomly selected

donors from TCGA (Fig 2A). MuTect2 had a similar median (92%), while the other callers were

more sensitive, with 95% for SomaticSniper, 98% for MuSE and 100% for Varscan2. Comparing

to a consensus of 3 or more of the other 4 methods confirms that SuperFreq (75% recalled) and

MuTect2 (79% recalled) are the two most conservative methods, while the remaining three

methods recalled 90% or more of the consensus variants. However, SuperFreq only called a

median of 1 somatic SNV that was not called by any other method, which was considerably

lower than all other methods (Fig 2B). MuSE called a median of 3.5 unique variants, MuTect2

called a median of 21, while Varscan2 and SomaticSniper called 230 and 7100 unique variants

respectively. Further distributions for the number of somatic variants called by permutations of

two or three callers are shown in S1 Fig using UpSetR [19]. When looking for potential driver

mutations, callers need to be sensitive to all somatic variants. However, in the context of clonal

tracking false positive calls can hinder the analysis. These results therefore validate the design of

SuperFreq for prioritising variants calls with low false positive rate compared with sensitivity.

Somatic SNVs without a matched normal

When a matched normal is not available, SuperFreq uses population frequencies and clonal

tracking to separate somatic and germline SNVs. We estimated the recall and false positive

Table 1. Properties of other mutation callers and clonal trackers in comparison to SuperFreq.

method call SSNV SSNV w/o normal call het SNPs call SCNA CNA w/o normal SCNA clones call clones multi-sample track SCNA

superFreq yes yes yes yes yes yes yes yes yes

mutect2 yes yes - - - - - - -

somaticSniper yes - - - - - - - -

strelka yes - - - - - - - -

varScan2 yes - - - - - - - -

sequenza yes - yes yes yes - - - -

absolute - - - yes - yes yes - -

pureCN yes yes yes yes yes - - - -

phyloWGS - - - - - - yes yes yes

sciClone - - - - - - yes yes -

pyClone - - - - - - yes yes -

identify SSNV: does the method identify somatic SNVs. SSNV w/o normal: does the method identify somatic SNVs without a matched normal. call het SNPs: does the

method identify heterozygous germline SNPs for CNA calling. call CNA: does the method call somatic CNAs. CNA w/o normal: does the method call CNAs without a

matched normal. subclonal CNA: can the method identify CNAs of multiple different clonalities. call clones: does the method identify clones. multisample: does the

method track clones across multiple samples. track SCNA: does the method track CNAs across samples. allele aware CNA: is the method aware of different alleles

affected by CNAs across samples.

https://doi.org/10.1371/journal.pcbi.1007603.t001
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rate for calls generated without a matched normal by comparing to somatic variants identified

by SuperFreq with matched normal controls. Most use cases focus on coding variants, so we

restricted the benchmarking to coding variants for a more relevant assessment. When run

with no matched normal SuperFreq identified a median of 97% of protein changing somatic

SNVs detected in the truth set with matched normal (Fig 2C). However, a median of 185 addi-

tional protein changing somatic SNVs were also called (Fig 2D), which were largely composed

of rare germline variants. We next filtered the calls using the SuperFreq germlineLike flag,

which identifies variants that are present clonally in all samples from an individual. The germ-

line filter reduced the median number of false calls to 62, but also lowered the median sensitiv-

ity to 82%. This drop in sensitivity is due to clonal somatic mutations being mistaken for

germline variants in high purity cancer samples.

The integrated nature of SuperFreq allows it to fully utilise the information in all matched

cancer samples. If multiple cancer samples are available that differ in tumour purity, they con-

tribute together in the clonal tracking to distinguish germline variants from somatic variants.

To simulate this process, we diluted the cancer sample in silico with sequence data from the

matched normal to produce samples with lower tumour purity (10%-90% of the original can-

cer sample). We then analysed the original cancer sample together with the diluted sample.

Adding a matched sample with 70% of the original purity and filtering on the germlineLike flag

brought the median recall rate up to 91% with a median of 58 false calls. This shows how

SuperFreq utilises even a moderate normal contamination in any of the matched cancer sam-

ples to separate somatic from rare germline variants.

Fig 2. Precision and recall of somatic SNV calling across 304 TCGA participants and 33 cancer types. (A) Recall of

somatic SNVs called by the other four callers. (B) Number of unique somatic calls generated by each caller. (C) Recall

of coding somatic SNVs from SuperFreq without a matched normal, using SuperFreq cancer-normal analysis as truth.

Violins from left: cancer sample alone without filtering on the germlineLike flag, cancer sample alone filtered on the

germlineLike flag, cancer sample paired with an in-silico dilution of the cancer and matched normal between 10% and

90%, filtered on the germlineLike flag. (D) Number of false coding SNV calls in the same sample configurations.

https://doi.org/10.1371/journal.pcbi.1007603.g002

SuperFreq: Integrated mutation detection and clonal tracking in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007603 February 13, 2020 5 / 21

https://doi.org/10.1371/journal.pcbi.1007603.g002
https://doi.org/10.1371/journal.pcbi.1007603


CNAs

SuperFreq monitors B-allele frequency and shifts in coverage compared to the reference nor-

mals. Segments are defined with hierarchical clustering and the clonality (cellular fraction of

the sample) of each CNA is determined separately. CNAs are cross checked between all sam-

ples from the sample individual, providing a clonality estimate for each sample that can be

used in clonal tracking. When cross-checking CNA calls, SuperFreq compares the direction of

the signal in B-allele frequency, and splits up CNAs that affect different alleles. This allele

aware CNA calling separates, for example, an AAB genotype from an ABB genotype and can

help to reveal recurring events over driving genes (see S1 Text, section 1.6.3).

We compared the CNA calls from SuperFreq to calls from matched SNP arrays done with

ASCAT. The ASCAT calls were lifted over from hg19 with segment_liftover [20]. First we mea-

sured general agreement between the methods by comparing LFCs and BAFs (Fig 3A). Across

the 292 cases where ASCAT data was available, we saw a bimodal distribution where most

samples were highly concordant, but 30% of samples had agreement across less than 20% of

the genome. This marked discrepancy results from different ploidy estimates. Restricting the

comparison to samples with consistent ploidy estimates resulted in agreement across 95%

(median) of the genome over 177 cases (blue violin in Fig 3A). We also used Sequenza to call

CNAs from the exomes and repeated the comparison to the ASCAT calls (Fig 3A), and found

similar results. Sequenza has a consistent ploidy with ASCAT in more cases (198), but had

lower overall agreement with ASCAT across the genome (90% median) for these cases. Super-

Freq relies on the reference normal samples for the LFC estimates, and only uses the matched

normal to identify heterozygous germline SNPs, so we did not expect to see major differences

in performance with or without a matched normal set. Indeed, when we performed the Super-

Freq analysis without matched normals we found a maintained agreement with ASCAT across

95% (median) of the genome in 181 samples with concordant ploidies (Fig 3A).

We investigated the differences in ploidy estimates between methods. SuperFreq does not

explicitly call a purity, so for comparison purposes we calculate ploidy as the average number

of haploid genomes across all cells in the sample, excluding sex chromosomes. While Super-

Freq and ASCAT agree on the majority of the cases, there are 60 samples where ASCAT calls a

significantly higher ploidy (>1 larger) (Fig 3C). It is difficult to accurately estimate ploidy

using SNP arrays or exomes and in the absence of orthogonal measurements we cannot deter-

mine which method is most accurate. It could be that the SuperFreq estimates are overly con-

servative, or that ASCAT is adjusting ploidy to accommodate subclonal CNAs. Most (90%) of

the cases with discrepant ploidy estimates had subclones in the SuperFreq analysis. Comparing

SuperFreq to Sequenza revealed a similar pattern (S2–S4 Figs). TCGA cases typically do not

have orthogonal ploidy information, but the TCGA-AML cohort has matching cytogenetics

which provides a more reliable ploidy measurement. AML has a very low rate of CNAs, and

none of the 194 cases with cytogenetic data has more than 53 chromosomes. Nonetheless,

ASCAT calls a ploidy >3 in 11 cases (6%), suggesting some high ploidy calls are artefactual.

ABSOLUTE is another method that calls absolute copy numbers that can account for sub-

clones. When ABSOLUTE was applied to the AML dataset it found a ploidy >3 in only 2 out

of 118 AML samples (2%). We next compared the SuperFreq ploidy estimates to those from

ABSOLUTE for the TCGA test cohort, which were available for 304 samples (Fig 3C). We

found that there was a modest improvement in the agreement, but there were still 49 samples

(16%, 37 samples overlap with ASCAT) where ABSOLUTE called a ploidy at least 1 larger than

SuperFreq. A better truth data set is needed for comparison of ploidy from CNA callers.

We next assessed the resolution of the CNA calls from SuperFreq by looking at the sensitiv-

ity based on the size of the event. For this purpose, we classified each segment into gain (copy

SuperFreq: Integrated mutation detection and clonal tracking in cancer
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Fig 3. Comparison of somatic CNA calls for 304 TCGA participants across 33 cancer types. (A) Distribution across

participants of the fraction of the genome that agrees with ASCAT. Agreement is defined as LFC and BAF within 0.145 and 0.05

SuperFreq: Integrated mutation detection and clonal tracking in cancer
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number larger than 2), loss (copy number smaller than 2) and CNN-LOH (copy number neu-

tral loss of heterozygosity) based on the calls from ASCAT, SuperFreq and Sequenza. We per-

formed a pair-wise comparison between methods, where we used one method as truth and

measured the fraction of the truth segment that was covered by segments with the same class

of copy number event in the second method. We first compared the more established meth-

ods, ASCAT and Sequenza, binning by the size of the truth segments (Fig 3D). We found that

CNA calls of all three classes had reliable recall when the size of the truth segment was >10

Mb. For CNAs smaller than 10 Mb recall dropped rapidly; below 1Mbp both Sequenza and

ASCAT recall very few of the CNAs of the other method. SuperFreq has a similar recall of

ASCAT segments as Sequenza (Fig 3D), also with low recall of small CNAs. SuperFreq calls

significantly fewer small segments than Sequenza (median 1 segment below 1Mbp per sample,

compared to median 16), which results in higher accuracy for small copy number segments.

Indeed, ASCAT agrees on the majority of small SuperFreq gain or loss calls down to 100kbp

(Fig 3D). This suggests that SuperFreq has a very low rate of false calls for gain and loss events.

SuperFreq calls subclonal copy numbers, so when SuperFreq acted as truth, we restrict it to

clonal CNAs, with a clonality > 0.5, and found good agreement for events greater than 0.5 Mb

(Fig 3D). Without restrictions on the SuperFreq truth, we found decreased recall for large

segments (>10Mbp) (S5 Fig). This may seem counterintuitive but is expected when consider-

ing that ASCAT does not call subclonal events, and that larger segments provide more power

to identify subclonal CNAs. Indeed, ASCAT recalls close to 100% of SuperFreq’s large CNA

calls with clonality above 0.5. Comparing SuperFreq to Sequenza shows similar behaviour

(S5 Fig), with the difference being that Sequenza has higher recall of small CNN-LOH. This

may indicate that these small CNN-LOH calls are true calls that are missed by the SNP array,

or it could be related to exome-specific artefacts. A comparison between SuperFreq with

and without a matched normal shows high recall for loss and gain events across all resolutions,

but with worse recall for CNN-LOH, which relies on accurate determination of germline

SNPs.

In order to assess SuperFreq’s sensitivity to CNAs covering small genomic regions and

those present at low purity, we diluted the cancer sample with the matched normal to simulate

lower purity CNAs. We also generated sliced samples in which reads from set regions of the

cancer sample replaced those in the normal sample. In this way we created samples with CNAs

spanning specific genomic regions, where we could control the size, and could also approxi-

mate lower tumour purity. Using the SuperFreq cancer-normal calls as truth, we measured the

rate of recall from SuperFreq run on sliced and diluted samples as function of the size and

clonality of the CNA. When using the matched normal to dilute or slice the sample, we cannot

use the same matched normal for analysis without introducing bias. For this reason we

restricted this assessment to cancer-only analysis, calling CNAs from the mixed sample

without a matched normal, which avoids this bias. We found that above 10Mbp and 30%

clonality, almost all CNAs are called, and there is then decreasing sensitivity for smaller events

and lower purity. (Fig 3D). The dilution series also provide a truth for the clonality of the

copy numbers, which are expected to be proportional to the cancer fraction (see example in

S6 Fig).

respectively, roughly corresponding to a 20% clonality gain or loss. The blue violins show only participants with a ploidy estimate

within 0.2 of ASCAT. (B) SuperFreq recall of somatic CNAs in diluted and sliced samples analysed without the matched normal,

with the original cancer-normal analysis used as truth. Each bin is based on at least 100 copy number segments. (C) Comparison

of ploidy estimates between ASCAT, ABSOLUTE and SuperFreq, coloured by number of somatic clones called by SuperFreq.

Samples were excluded if no somatic clone was called. (D) Recall of gain, loss and CNN-LOH binned by size of the segment,

limited to participants where the ploidy agrees within 0.2 between the methods.

https://doi.org/10.1371/journal.pcbi.1007603.g003
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Clonal tracking

Existing clonal trackers are generally run on highly curated sets of somatic SNVs and CNAs.

SuperFreq, by contrast, works with input variant calls made with permissive settings and

performs an internal quality assessment. This quality assessment relies on variant characteris-

tics derived from the BAM file. To generate a test dataset for clonal tracking with SuperFreq,

we created three matched cancer samples for each TCGA participant by diluting (replacing

cancer reads with normal reads) and slicing (replacement of cancer regions with those

from the normal) the BAM files from the cancer (Fig 4A, see methods). Dilution and splicing

was used to create four distinct clones in each sample set, that carry mutations in different

genomic regions, which we could use to estimate recall and false positive rate. Only partici-

pants that had at least one cancer clone detected in the cancer-normal analysis were included

(289 out of 304), but there were otherwise no restrictions on the number of mutations split

across the four clones. The analysis was performed both with and without the matched normal

control.

We analysed the matched samples with SuperFreq and measured the rate of recall of clones,

as a function of the maximum clonality (Fig 4B and 4C), where clonality is the cellular fraction

of the sample. We also assessed how many mutations were correctly attributed to each clone,

based on the chromosome harbouring the mutation. An example participant is shown in S7–

S9 Figs. As we only have access to one normal and one cancer sample, we cannot avoid biases

between samples, where the same reads will represent the cancer or normal cell fractions in all

samples. Across 289 test datasets generated from TCGA samples, we found that SuperFreq

detected 93% of the simulated clones with a maximum clonality above 50% (Fig 4B). When

considering participants with tumour purity above 75%, SuperFreq detected all four clones in

52% of cases, and three or more clones in 79% of cases, (Fig 4C). SuperFreq had a lower false

positive rate, calling a false clone in less than 10% of cases (Fig 4D). When considering clones

that were correctly identified, we can measure precision and recall of the mutations contribut-

ing to the clone. For clones above 50% clonality, SuperFreq recalled a median of 59% of the

mutations with median 100% precision (Fig 4E and 4F). We next assessed clonality calling in

the absence of a matched normal control. In this analysis SuperFreq had lower recall for clones

above 50% clonality, dropping from 93% to 80%. When considering cases with high tumour

purity, SuperFreq still recalled three or more clones in 67% of cases. There was a marked

increase in the fraction of cases in which a false clone was called, increasing from 10% to 80%.

The median recall rate of mutations remained similar, but with a drop in median precision

from 100% to 89%.

For comparison of the clonal tracking step, the CNAs and somatic SNVs called with a

matched normal were also analysed by SciClone: a dedicated clonal tracker. SciClone has rela-

tively strict requirements for somatic SNVs, with a default requirement for at least 10 high

quality SNVs in regions with normal diploid copy number. As some of the cases did not meet

this requirement, the default filters were gradually relaxed until the algorithm could be exe-

cuted. Note that this does not constitute a comparison of the entire SuperFreq pipeline, only

the last clonal tracking step. Performance depended strongly on the SciClone settings and

details of the relaxed requirements. With the best analysis scheme, SciClone achieved a lower

sensitivity of 67% at clonalities above 50% (Fig 4B), but had higher sensitivity at low clonality.

Similarly for the number of clones detected, SciClone detected fewer clones at high clonality

(detecting all 4 clones in 35% of cases above 75% clonality), but displayed higher sensitivity at

low clonality. SciClone showed a higher false positive rate, calling a false clone in 19% of cases

with matched normal.
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Fig 4. Precision and recall of SuperFreq clonal tracking. (A) Overview of simulations. As illustrated on the left, the genome is divided into four regions (chr

1–3, 4–8, 9–14 and 15-Y), and the cancer and normal samples are blended to create three samples that contain four clones supported by mutations that reside in
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Application: Clonal tracking in AML

To demonstrate how SuperFreq can be applied for clonal tracking, we present an analysis of a

cohort of patients with relapsed AML [1]. For these patients, samples were available at diagno-

sis, at relapse and from purified lymphocytes, which could be used as a matched normal con-

trol. We ran SuperFreq using default parameters with up to 10 normal samples from the same

centre as reference normals. We found that SuperFreq could identify somatic SNVs and CNAs

and reliably distinguish diagnosis specific events, relapse specific events and those present at

both time-points (Fig 5). Overall the clonal structure predicted for each sample was consistent

with the published results generated with sciClone [1], with the exception of low abundance

clones that were more variable. These results were in keeping with our TCGA simulations (Fig

4). There were some cases with marked differences in predicted clonal structure, for example

SuperFreq identified a diagnosis-specific clone in AML.102 that was not defined in the original

analysis. This diagnosis-specific clone is supported by a high confidence CNA call, a chromo-

some wide gain on chromosome 8 (designated AAB in Fig 5A). Chromosome 8 was also

gained at relapse in that patient, but allele specific tracking showed it was the alternate allele

(designated ABB) (highlighted Fig G in S1 Text). This example shows how allele specific track-

ing can help to define recurrent CNAs to aid identification of important functional mutations.

We provide a more detailed review of AML.084 and AML.102. For AML.084 a single, dom-

inant cancer clone (blue) was detected at diagnosis (Fig 5B). Candidate somatic variants are

prioritised, based on variant effect and comparison to the COSMIC database. In this case four

mutations were detected in COSMIC census genes, including a splice site variant in RUNX1
and a hotspot mutation in SF3B1 (K700E). We also detected a CNN-LOH event on chr21 (des-

ignated chr21 AA), which extends over 31Mbp and includes RUNX1. The RUNX1 variant has

a VAF significantly larger than 50%, consistent with loss of the wildtype allele. At relapse,

AML.084 exhibits a new subclone present at around 40% clonality, which carries five protein

altering SNVs, together with loss of a 10Mbp segment on chr11. Closer examination of the

CNA on chr11 revealed loss of the tumour suppressor gene WT1. When we examined

AML.110 we found that it had also acquired mutations in WT1 at relapse, both a missense

mutation (D464N) and CNN-LOH. These cases highlight an important feature of SuperFreq,

which is the tracking of CNAs, together with correction of VAF for local copy number,

improves the accuracy of clonal tracking and aids identification of important genes.

We repeated the end-to-end SuperFreq analysis of these four cases without the matched

normals (Fig 6). Most of the clonal structure and key mutations were recalled, but with an

increase in false calls. We note that the four point mutations in AML genes are called and

tracked, as well as the RUNX1 CNN-LOH. However, the CNN-LOH over WT1 was missed

owing to the very high clonality (>90% of cells), which made it difficult to distinguish. In the

absence of the matched normal we note the increased number of false somatic clones. These

false clones result from the inclusion of low quality SNV calls, they are generally present at low

clonality and tend to show similar clonality at diagnosis and relapse.

In the absence of a matched normal SuperFreq retained high recall of somatic variants

(91%), with 9% of variants excluded because of their presence in population data bases. With-

out a matched normal we saw inflation of the total candidate somatic variant count due to

inclusion of rare coding variants (average 226 coding variants per sample), but application of

different regions of the genome. The expected clonalities across the three samples are shown to the right, where P denotes the purity of the cancer sample. (B)

Sensitivity to find clones with a matched normal (WMN) or no matched normal (NMN) in SuperFreq and SciClone, as function of maximum clonality. (C)

Recall of the four simulated clones, binned on the purity of the original cancer sample. (D) Number of false clones called. (E) Fraction of mutations associated

with a clone originating from the expected chromosomes in panel A. (F) Fraction of mutations called in the cancer-normal recalled by the called clones.

https://doi.org/10.1371/journal.pcbi.1007603.g004
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Fig 5. Assessment of clonal structure in AML using SuperFreq. (A) Clone scatter plots of four AML patients. The VAF

is shown for all somatic point mutations that are tracked by SuperFreq, coloured by the clone they are assigned to.
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the germline filter reduced this by approximately 70% (average 68 coding variants per sample)

(S1 Table). Using the germlineLike filter, the recall dropped to 87% total, but this assessment

was skewed by inclusion of AML.080, which has a very high mutation load (S1 Table). The

other three patients have recall below 50% with this filter, due to the high purity of the cell

sorted cancer samples. This highlights an important point, that caution must be taken when

analysing samples with high tumour content in the absence of a matched normal control

because of the overlap in the distribution of the VAFs for somatic and germline variants (Fig 6).

Selected mutations are highlighted, including CNAs that are assigned a VAF of half of the clonality. Point size is used to

indicate read depth, with larger points reflecting higher coverage. River plots and line plots showing the progression of the

clones across the Diagnosis (Dx), sorted normal (N) and relapse (Rel) samples for (B) AML.084 and (C) AML.110. Key

mutations are highlighted in the line plots.

https://doi.org/10.1371/journal.pcbi.1007603.g005

Fig 6. Assessment of clonal structure in AML using SuperFreq without matched normal controls. Clone scatter

plots of four AML patients (as in Fig 5), generated without using the matched normal sample. We include the germline

clone to illustrate how it absorbs germline variants, as well as some somatic variants that have high clonality in both

samples. While this is done successfully in AML.080 and AML.110, the two other samples have a large number of

variants designated as somatic that are not identified in the cancer-normal analysis. AML.084 and AML.110 identify

clones at low clonality in both samples that are not seen in the cancer-normal analysis, shown in grey.

https://doi.org/10.1371/journal.pcbi.1007603.g006
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In this case the contaminating normal tissue helps to separate somatic mutations from rare

germline variants.

Discussion

Recapitulating the evolutionary history of a cancer from sequencing data can be tremendously

insightful, but it is technically challenging. Selecting high quality somatic variants appropriate

for clonal tracking is a significant barrier. This can be further compounded by technical imper-

fections in the sample data, or the absence of a high quality matched normal. SuperFreq

addresses these challenges; it provides a single analysis that performs somatic SNV filtering,

CNA calling and clonal tracking, without requiring a matched normal. Variants are annotated

with their effect on proteins and compared to population and cancer databases to aid interpre-

tation and to highlight potential driver mutations.

A key aspect to maximise sensitivity while limiting false calls throughout the analysis was to

maintain accurate error estimates. Using a single value as the error estimate allowed us to

propagate the error throughout all the steps of the analysis and allowed us to account for multi-

ple error sources. The error estimates inform multiple steps in the analysis, such as copy num-

ber segmentation and calling, mutation clustering, and classification of anchor mutations.

To show that the workflow is robust, we analysed exomes with SuperFreq across 33 cancer

types in TCGA. This ensured heterogeneity in somatic SNV and CNA mutation rate, as well as

technical biases, and allowed us to assess performance of SuperFreq in a wide range of settings.

We showed that SuperFreq recalled more than 90% of the somatic SNVs and CNAs (those larger

than 10Mbps) identified by a consensus of other methods, and maintained a similar level of per-

formance without a matched normal, albeit with more false positive calls. Some aspects of copy

number calling remain challenging, including estimating ploidy, detecting small events and

accounting for overlapping subclonal CNAs, highlighting the need for detailed orthogonal testing

to validate calls. In the absence of a matched normal, we found that having matched cancer sam-

ples with different levels of purity also improved the precision and recall of somatic SNVs.

To assess the ability of SuperFreq to reconstruct a clonal history, we developed an innova-

tive approach where we sliced and blended data from TCGA samples to produce sets of sam-

ples with an expected clonal structure. Partitioning mutations to specific genomic intervals

aided the detection of false positive calls. This was expected to be a challenging data set to ana-

lyse, but SuperFreq recovered 93% of clones above 50% clonality, with fewer than 10% of cases

having false clones. The frequency of false clones increased markedly in the absence of a

matched normal control, which means extra caution should be taken when working without a

matched normal control. While we found that SuperFreq can reliably perform a fully auto-

mated analysis of somatic SNVs and CNAs followed by clonal tracking, we recommend

orthogonal testing to validate predicted clonal structures.

SuperFreq was designed to detect and track somatic mutations in exomes, and it has been

applied to study breast cancer metastasis [2, 21], lung cancer xenografts [22], gastric cancer

organoids [23], and myeloid leukaemia [24]. SuperFreq is highly versatile and it has since been

applied to study small capture sets [25] and low pass whole genomes [26]. We want to draw

attention to De Mattos-Arruda [21], where multiple pipelines, including SuperFreq, were used

in parallel for clonal tracking, and the authors found overall quite consistent results between

methods, providing an independent example of how SuperFreq can be applied for an end-to-

end analysis on real data. Further improvements in how we benchmark clonal tracking meth-

ods is an important consideration for the field. We are currently optimising performance to

allow routine analysis of whole genomes and have also produced promising results when

applying SuperFreq to transcriptomes.
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Methods

Section 1 of S1 Text contains a comprehensive description of the SuperFreq algorithm. This

paper describes version 1.0.0, the current version of the software is available at https://github.

com/ChristofferFlensburg/SuperFreq.

Initial data inputs to SuperFreq

The input to SuperFreq is a set of indexed BAM files for the samples and reference normals,

together with metadata of the samples and the reference genome to which the samples were

aligned. We have found that 5–10 normal samples are generally sufficient. We found perfor-

mance did drop with a lower number of normal samples (S2 Table), but in our experience the

quality of the normal samples, in terms of their ability to reproduce technical artefacts found

in the test samples can be more important than using a larger number of control samples. We

expect good recall for heterozygous clonal variants at>30x read depth, but recall will drop as

coverage diminishes.

SNV and small indel quality control

SuperFreq first performs preliminary variant calling on each sample with liberal settings using

Varscan. This step can be skipped if the user provides VCF files with preliminary variant calls

directly. SuperFreq shares the preliminary variants across all samples and filters variants using

base quality, mapping quality, and strandedness. Variants present in the reference normals are

removed from the analysis of somatic SNVs, but common population polymorphisms are

retained for CNA calling. This is described further in section 1.2 of S1 Text.

Somatic SNV calling and annotation

Variants are identified as somatic if they have a significantly higher variant allele frequency

(VAF) in the cancer compared to the normals. If there is a matched normal sample we perform

a Fisher exact test on the number of variant and reference reads between the cancer and the

matched normal. In the absence of a matched normal, a filter is applied to exclude variants

with a population frequency > 0.1% (dbSNP [27] and ExAC [28]). Candidate somatic variants

that cluster with the germline in the clonal tracking are marked with the germlineLike flag. The

somatic SNV assessment is summarised in a quality score somaticP between 0 and 1 reflecting

the confidence that the variant is somatic. For downstream analysis of somatic variants, we

typically use somaticP> 0.5 as cut-off, but it can be adjusted to favor precision or recall.

Somatic SNVs are annotated using Ensembl Variant Effect Predictor [29], and candidate

driver mutations are highlighted through comparison to the Catalogue Of Somatic Mutations

In Cancer [30]. The details of somatic SNV identification in SuperFreq is described in section

1.3 of S1 Text.

CNA calling

SuperFreq uses read coverage and B-allele frequencies (BAFs) at heterozygous germline vari-

ants to call CNAs. FeatureCounts [31] is used to determine the read count over each capture

region (exon) for each sample. The read counts are corrected for GC-bias and correlations

between total read count and LFC with respect to the reference normals (Fig A and B in S1

Text). SuperFreq runs limma-voom [32, 33] with sample weights [34] on the bias-corrected

counts to test for an increase or decrease in coverage indicating a CNA. Each sample is com-

pared, one-against-many, to the reference normals, resulting in a log fold change (LFC) in

read depth and t-statistic for each region. SuperFreq exploits the expected property that most
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adjacent capture regions will share the same true LFC, i.e. that the number of true copy num-

ber breakpoints is much smaller than the number of genes. With that assumption, a median

difference between adjacent capture regions larger than expected from the limma-voom vari-

ance estimates is a sign of underestimated variance, which is corrected by adding a constant to

the variance estimate, as shown in Fig C in S1 Text. By using the median difference, we are not

sensitive to the small fraction of neighbours that span a copy number breakpoint. The analysis

of the read counts is described comprehensively in section 1.4 of S1 Text.

In addition, heterozygous germline SNPs are identified for use in CNA calling and used to

determine the B allele frequency (BAF). If a matched normal is present, common population

variants that are observed to have close to a 50% variant allele frequency (VAF) in the matched

normal are used. If no matched normal is present, then variants with > 1% population allele

frequency with a sample VAF between 5% and 95% are used. Each copy number segment is

tested for balanced allele frequency using a log likelihood ratio approach, as described in sec-

tion 1.5 of S1 Text.

Finally, the genome is segmented into copy number regions based on the coverage LFC and

BAF. The capture regions for each gene are merged and hierarchical clustering is performed.

The most similar adjacent segments are merged recursively, with a distance measure compar-

ing LFC and BAF. The ploidy of the sample is then determined from the ratio of the coverage

LFC with respect to the reference normals. Different segments are assigned clonality (sample

cellular fraction) and copy number call independently. Each segment is assumed to only have

a single copy number alteration. This process is illustrated in the maypole plot in Fig F in S1

Text, where ploidy corresponds to a constant shift along the x-axis, and is described in sec-

tion1.6 of S1 Text.

Clonal tracking

The clonality (sample cellular fraction) of each somatic SNV is calculated based on the VAF,

accounting for local copy number. The clonality of each CNA is tracked over samples, and

alterations affecting different alleles are split into separate mutations (e.g. AAB and ABB geno-

types), see section 1.6.3 in S1 Text. The SNVs and CNAs undergo hierarchical clustering based

on the clonality and uncertainty across all samples. The resulting clusters are required to be

consistent with a phylogenetic tree. Specifically we require clonal unitarity: that the immediate

subclones are not allowed to have a significantly higher summed clonality than that of the

parental clone. Inconsistencies are resolved by removing the clone scoring highest in a set of

properties typical of false clones, such as constant clonality, high proportion of indels com-

pared to SNVs, or few supporting mutations. The clustering is initially performed with only

high confidence somatic mutations. Mutations with lower confidence are then added to the

most similar cluster, or discarded if no sufficiently similar cluster is found. The details are

available in section 1.7 of S1 Text.

Resource usage

For a cancer-normal pair of exomes with 10 reference normal samples, SuperFreq typically

runs in 3 hours on 5 cpus, using 20Gb of memory and creating 400MB of data and plots. Run-

time and memory usage vary depending on multiple factors, such as number of germline vari-

ants, number of somatic mutations, library size and levels of noise in the studied samples.

Availability

SuperFreq is available as an R package on github:

https://github.com/ChristofferFlensburg/SuperFreq/
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The data underlying the results presented in the study are available from the database of

Genotypes and Phenotypes and the Genomic Data Commons, after approval of each respective

data access committee. We have made processed data available, to enable reproduction of

results and figures, however, germline variant calls have been censored. Results from the

TCGA analysis and code to reproduce the figures are available at:

https://gitlab.wehi.edu.au/flensburg.c/SuperFreqPaper

Ethics statement

This study involves the analysis of published cancer genomics data sourced from the Genomic

Data Commons. Research datasets are detailed in the acknowledgments section.

Supporting information

S1 Fig. SNV detection across methods. The fraction of SNVs called by subsets of 5 different

SNV callers, relative to the number of SNVs called by all callers. Participants with less than 10

SNVs called by all methods are not included. The fraction is capped at 2. Graphics produced

with the help of UpSetR.

(TIF)

S2 Fig. Assessing ploidy and clonality calls. Ploidy calls from Sequenza and SuperFreq were

coloured based on the number of cancer clones called by SuperFreq.

(TIF)

S3 Fig. Copy number calls and CNA model fits for Lung Squamous Cell Carcinoma

TCGA-34-5240. (A) Maypole plot showing the model fit for the ploidy call (or equivalently

LFC normalisation) in SuperFreq. Coloured lines show expected LFC and MAF of different

copy number calls, with lines growing thicker with the clonality of the call. Dots show data

from each segment with uncertainty in LFC and MAF, allowing for heteroscedasticity. Nor-

malisation corresponds to a constant shift along the x-axis to make the crosses fit with the lines

within errors. (B) Sequenza model fit of the ploidy and purity call. Linear copy number call on

the y-axis roughly corresponds to the x-axis of the maypole plot, and the x-axis in the Sequenza

plot is the y-axis of the maypole plot. The single purity gives rise to single points for each copy

number call, and the uncertainty is shown for the expected call rather than for the data points.

(TIF)

S4 Fig. Copy number calls and CNA model fits for Lung Squamous Cell Carcinoma

TCGA-34-5240. (A) Copy number calls from SuperFreq, showing LFC, MAF and clonality of

the call. The size of the dots represent accuracy, based on the adjusted limma estimates for

LFC, and based on the effective coverage for the BAFs. Segments, shown as dots with horizon-

tal lines, also shows error estimates through an error bar and point size, and the extension of

the segment on the x-axis. CNA calls are shown below the BAF segments, where uncertain

calls (inconsistent data) are marked with "?" or "??". (B) Copy number profile from Sequenza

with a purity of 0.68. Red shows major copy number, blue shows minor allele copy number.

(TIF)

S5 Fig. Assessment of CNA calls based on size. Recall of gain, loss and CNN-LOH binned by

size of the segment, limited to participants where the ploidy agrees within 0.2 between the

methods. "Clonal" indicates that the truth segments are limited to CNAs where SuperFreq

called a clonality above 0.5.

(TIF)
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S6 Fig. Copy number calls and clonal tracking across a dilution series of TCGA-BQ-5879.

First panels are copy number calls at dilutions of 0.9, 0.7, 0.5, 0.3 and 0.1. Last three panels show

the clonal tracking: river plot (germline variants removed) and line plots across the dilutions.

Although some CNAs are not called at the 0.3 dilution, and none is called at 0.1, they are still

tracked and are assign accurate clonalities as shown in the last panel (not default SuperFreq out-

put) where tracked CNAs are shown as blue lines, and the clone is shown in red. SuperFreq shares

the call and the segment coordinates across samples and queries the clonality by forcing the copy

number call onto the segment in the other samples. In case the CNA is truly not present, the con-

fidence interval is expected to overlap a clonality of 0. This analysis is performed without the

matched normal sample, as the matched normal was used to dilute the cancer sample.

(TIF)

S7 Fig. Simulated clonal tracking of Lung Squamous Cell Carcinoma TCGA-34-5240:

Original river. The original cancer has 4 clones called by SuperFreq. The copy number profile

is shown in S4 Fig.

(TIF)

S8 Fig. Simulated clonal tracking of Lung Squamous Cell Carcinoma TCGA-34-5240:

CNAs. CNA calls over the genome showing LFC and BAF. The size of the dots represent accu-

racy, based on the adjusted limma estimates for LFC, and based on the effective coverage for

the BAFs. Segments, shown as dots with horizontal lines, also shows error estimates through

an error bar and point size, and the extension of the segment on the x-axis. CNA calls are

shown below the BAF segments, where uncertain calls (inconsistent data) are marked with "?"

or "??". The three simulated samples draw from mutations in different subsets of the chromo-

somes and of different admixtures of normal and cancer samples as illustrated by the copy

number calls of the three samples. This process is described in Fig 4A in the main paper. The

copy number profile of the original cancer is shown in S4 Fig.

(TIF)

S9 Fig. Simulated clonal tracking of Lung Squamous Cell Carcinoma TCGA-34-5240:

River plot. The SuperFreq clonal tracking of the simulated samples detects 3 subclones of the

first clone based on the mutations on chr1 to chr3, while subclones are not detected for the

other clones. We see that the mutations listed in each clone are found on the expected chromo-

somes from the schematic in Fig 4A in the main paper.

(TIF)

S1 Table. Assessment of variant calling in AML samples. truth: Total number of coding

somatic variants called in SuperFreq with matched normal. TP: Number of coding variants

recalled (True Positives) without a matched normal (total 91%). FNP: Fraction of lost coding

variants (False Negatives) without matched normal that are present in Population databases

dbSNP or ExAC (100%). FP: Number of coding variants called without matched normal, not

called with a matched normal (False Positives). TPg: Number of variants recalled (True Posi-

tives) without a matched normal after filtering on the germlineLike flag (total 87%). FPg: Num-

ber of coding variants called without a matched normal after germlineLike filter, not called with

a matched normal. FPgP: Number of coding variants called without a matched normal after

germlineLike filter, not called with a matched normal (False Positives), that are present in Popu-

lation databases dbSNP or ExAC. We note that the number of false calls does not seem to

depend on the number of true mutations, which confirms that the absolute number of false calls

is a more robust measure of performance than normalised measures such as precision.

(PDF)
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S2 Table. Assessment of variant calling in AML.084 with different numbers of matched

normals. Recall, fraction false negatives in dbSNP, number of false positive somatic variants

and runtime with 4 cpus in AML.084 with 5, 3 and 2 reference normals, using the analysis

with 10 reference normals as truth. The runtimes are for the first run with the reference nor-

mals, subsequent runs of other samples using the same reference normals reuse gene counts

and variants which decreases runtime. In our experience, the quality of the reference normals

in mimicking the studied samples biases is more important than the number of reference nor-

mal samples.

(PDF)

S1 Text. Supplementary methods. A supplementary methods section is provided which pro-

vides additional background on the design and implementation of SuperFreq.

(PDF)
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(A.M. Melnick).
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