116 research outputs found

    Photocatalytic hydrogen production by biomimetic indium sulfide using Mimosa pudica leaves as template

    Get PDF
    Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization, revealing an increase in surface area, decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (S O/S C/S H) and sulfur oxide species ( SO2, SO32−, SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles, respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1, respectively, indicating an improvement by a factor of three in the templated sample

    Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    Get PDF
    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non‐radiative charge recombination that significantly reduces device performance. Here a facile post‐synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near‐complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. This process also dramatically improves the air‐stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air‐exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours

    Testing for an effect of a mindfulness induction on child executive functions

    Get PDF
    Several sessions of mindfulness practice can exert positive gains for child executive functions (EF); however, the evidence for effects of a mindfulness induction, on EF for adults, is mixed and this effect has not been tested in children. The immediate effect of an age appropriate 3-min mindfulness induction on EF of children aged 4–7 years was tested. Participants (N = 156) were randomly assigned to a mindfulness induction or dot-to-dot activity comparison group before completing four measures of EF. A composite score for EF was calculated from summed z scores of the four EF measures. A difference at baseline in behavioural difficulties between the mindfulness induction and comparison group meant that data was analysed using a hierarchical regression. The mindfulness induction resulted in higher average performance for the composite EF score (M = 0.12) compared to the comparison group (M = − 0.05). Behavioural difficulties significantly predicted 5.3% of the variance in EF performance but participation in the mindfulness or comparison induction did not significantly affect EF. The non-significant effect of a mindfulness induction to exert immediate effects on EF fits within broader evidence reporting mixed effects when similar experimental designs have been used with adults. The findings are discussed with consideration of the extent to which methodological differences may account for these mixed effects and how mindfulness inductions fit within broader theoretical and empirical understanding of the effects of mindfulness on EF

    Acute physical exercise can influence the accuracy of metacognitive judgments

    Get PDF
    Acute exercise generally benefits memory but little research has examined how exercise affects metacognition (knowledge of memory performance). We show that a single bout of exercise can influence metacognition in paired-associate learning. Participants completed 30- min of moderate-intensity exercise before or after studying a series of word pairs (cloudivory), and completed cued-recall (cloud-?; Experiments 1 & 2) and recognition memory tests (cloud-? spoon; ivory; drill; choir; Experiment 2). Participants made judgments of learning prior to cued-recall tests (JOLs; predicted likelihood of recalling the second word of each pair when shown the first) and feeling-of-knowing judgments prior to recognition tests (FOK; predicted likelihood of recognizing the second word from four alternatives). Compared to noexercise control conditions, exercise before encoding enhanced cued-recall in Experiment 1 but not Experiment 2 and did not affect recognition. Exercise after encoding did not influence memory. In conditions where exercise did not benefit memory, it increased JOLs and FOK judgments relative to accuracy (Experiments 1 & 2) and impaired the relative accuracy of JOLs (ability to distinguish remembered from non-remembered items; Experiment 2). Acute exercise seems to signal likely remembering; this has implications for understanding the effects of exercise on metacognition, and for incorporating exercise into study routines

    Parallel valence- and core-level photoemission studies of the metal-to-nonmetal transition in YBa2Cu3O7-x.

    No full text
    Valence-level and Cu 2p core-level photoemission spectra for YBa2Cu3O7-x in both metallic (x<0.5) and nonmetallic (x>0.5) phases are presented together for the first time. The core spectra show evidence for holes in the hybrid Cu3d-O 2p valence levels in the metallic state, but nonetheless the density of states at the Fermi energy seen in valence-level photoemission is at most 0.05 states/eV cell. © 1989 The American Physical Society
    corecore