581 research outputs found

    A Naturally Large Four-Point Function in Single Field Inflation

    Full text link
    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation is of the form ωcsk\omega\sim c_s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ωk2/M\omega\sim k^2/M a similar construction can be carried out and additional shapes are possible.Comment: 13 pages, 1 figure. v2: extended discussion on near-de-Sitter model

    New Sources of Gravitational Waves during Inflation

    Get PDF
    We point out that detectable inflationary tensor modes can be generated by particle or string sources produced during inflation, consistently with the requirements for inflation and constraints from scalar fluctuations. We show via examples that this effect can dominate over the contribution from quantum fluctuations of the metric, occurring even when the inflationary potential energy is too low to produce a comparable signal. Thus a detection of tensor modes from inflation does not automatically constitute a determination of the inflationary Hubble scale.Comment: 32 pages, 1 figure. v2: JCAP published version; some overestimates corrected; main results unchange

    Brane-Antibrane Backreaction in Axion Monodromy Inflation

    Full text link
    We calculate the interaction potential between D5 and anti-D5 branes wrapping distant but homologous 2-cycles. The interaction potential is logarithmic in the separation radius and does not decouple at infinity. We show that logarithmic backreaction is generic for 5-branes wrapping distant but homologous 2-cycles, and we argue that this destabilises models of axion monodromy inflation involving NS5 brane-antibrane pairs in separate warped throats towards an uncontrolled region.Comment: 12 page

    Running Spectral Index from Inflation with Modulations

    Full text link
    We argue that a large negative running spectral index, if confirmed, might suggest that there are abundant structures in the inflaton potential, which result in a fairly large (both positive and negative) running of the spectral index at all scales. It is shown that the center value of the running spectral index suggested by the recent CMB data can be easily explained by an inflaton potential with superimposed periodic oscillations. In contrast to cases with constant running, the perturbation spectrum is enhanced at small scales, due to the repeated modulations. We mention that such features at small scales may be seen by 21 cm observations in the future.Comment: 7 pages, 6 figures, v2: published in JCA

    (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation

    Full text link
    We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson \pi is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber. We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n>2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.Comment: v2 minor revisions; 39 pages, 5 figure

    Oscillations in the bispectrum

    Get PDF
    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.Comment: 6 pages, 2 figures, submitted to JOP: Conference Series, PASCOS 201

    Delayed Reheating and the Breakdown of Coherent Oscillations

    Full text link
    We analyze the evolution of the perturbations in the inflaton field and metric following the end of inflation. We present accurate analytic approximations for the perturbations, showing that the coherent oscillations of the post-inflationary condensate necessarily break down long before any current phenomenological constraints require the universe to become radiation dominated. Further, the breakdown occurs on length-scales equivalent to the comoving post-inflationary horizon size. This work has implications for both the inflationary "matching" problem, and the possible generation of a stochastic gravitational wave background in the post-inflationary universe.Comment: 18 pages, 5 figures, v2: references added, extended discussion in section

    Subleading effects and the field range in axion inflation

    Get PDF
    An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and monomial inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field natural and monomial inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.Comment: 18 pages, 15 figures; v2 references improve

    Local Features with Large Spiky non-Gaussianities during Inflation

    Full text link
    We provide a dynamical mechanism to generate localized features during inflation. The local feature is due to a sharp waterfall phase transition which is coupled to the inflaton field. The key effect is the contributions of waterfall quantum fluctuations which induce a sharp peak on the curvature perturbation which can be as large as the background curvature perturbation from inflaton field. Due to non-Gaussian nature of waterfall quantum fluctuations a large spike non-Gaussianity is produced which is narrowly peaked at modes which leave the Hubble radius at the time of phase transition. The large localized peaks in power spectrum and bispectrum can have interesting consequences on CMB anisotropies.Comment: 22 pages, 2 figure

    Stimulated superconductivity at strong coupling

    Full text link
    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.Comment: 19 pages, 2 figure. v3: Comments, references and one figure added. Version to appear in JHE
    corecore